Kalman Filter Question
Hello forum,
I am trying to understand the theory behind kalman filter and I have a question to ask. I am following the tutorial shown here. http://opencvexamples.blogspot.com/20...
The predicted position of the cursor is always "lagging behind" no matter how high the velocity of the transition matrix is at. I even tried setting it to 100. What values should I change such that the filter predicts the position of my cursor way ahead ? In other words, I would like the prediction to not lag behind, just like the particle filter for tracking.
#include <iostream>
#include <vector>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/video/tracking.hpp>
using namespace cv;
using namespace std;
struct mouse_info_struct { int x, y; };
struct mouse_info_struct mouse_info = { -1, -1 }, last_mouse;
// plot points
#define drawCross( center, color, d ) \
line( img, Point( center.x - d, center.y - d ), \
Point( center.x + d, center.y + d ), color, 2, CV_AA, 0); \
line( img, Point( center.x + d, center.y - d ), \
Point( center.x - d, center.y + d ), color, 2, CV_AA, 0 )
vector<Point> mousev, kalmanv, predictv;
void on_mouse(int event, int x, int y, int flags, void* param) {
{
last_mouse = mouse_info;
mouse_info.x = x;
mouse_info.y = y;
cout << "got mouse " << x << "," << y << endl;
}
}
int main(int argc, char * const argv[])
{
Mat img(500, 500, CV_8UC3);
KalmanFilter KF(6, 2, 0);
Mat_<float> state(6, 1);
Mat processNoise(6, 1, CV_32F);
Mat_<float> measurement(2, 1); measurement.setTo(Scalar(0));
char code = (char)-1;
namedWindow("mouse kalman");
setMouseCallback("mouse kalman", on_mouse, 0);
for (;;)
{
if (mouse_info.x < 0 || mouse_info.y < 0)
{
imshow("mouse kalman", img);
waitKey(30);
continue;
}
else
break;
}
KF.statePre.at<float>(0) = mouse_info.x;
KF.statePre.at<float>(1) = mouse_info.y;
KF.statePre.at<float>(2) = 0;
KF.statePre.at<float>(3) = 0;
KF.statePre.at<float>(4) = 0;
KF.statePre.at<float>(5) = 0;
int dt_x = 0;
int dt_y = 0;
KF.transitionMatrix = (Mat_<float>(6, 6) << 1, 0, dt_x, 0, 0.5, 0,
0, 1, 0, dt_y, 0, 0.5,
0, 0, 1, 0, 1, 0,
0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1);
KF.measurementMatrix = (Mat_<float>(2, 6) << 1, 0, 1, 0, 0.5, 0, 0, 1, 0, 1, 0, 0.5);
setIdentity(KF.measurementMatrix);
setIdentity(KF.processNoiseCov, Scalar::all(1e-4));
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
setIdentity(KF.errorCovPost, Scalar::all(.1));
mousev.clear();
kalmanv.clear();
while (1 == 1)
{
Mat prediction = KF.predict();
Point predictPt(prediction.at<float>(0), prediction.at<float>(1));
predictv.push_back(predictPt);
if (predictv.size() > 1)
for (int i = 0; i < predictv.size() - 1; i++)
{
line(img, predictv[i], predictv[i + 1], Scalar(255, 255, 255), 2);
}
measurement(0) = mouse_info.x;
measurement(1) = mouse_info.y;
Point measPt(measurement(0), measurement(1));
mousev.push_back(measPt);
Mat estimated = KF.correct(measurement);
Point statePt(estimated.at<float>(0), estimated.at<float>(1));
kalmanv.push_back(statePt);
if (kalmanv.size() > 1)
{
dt_x = kalmanv.end()[-1].x - kalmanv.end()[-2].x;
dt_y = kalmanv.end()[-1 ...
this question is also interesting