if(imagess)
{
//Initialise the Wrapping Class for Surf()
//FastFeatureDetector detector (600);
// MserFeatureDetector detector (1000);
OrbFeatureDetector detector (5000);
// SurfFeatureDetector detector(60);
//SiftFeatureDetector detector(2000);
//detect : first param: Image, second param: vector (output)
//vector<KeyPoint> keypoints1,keypoints2;
detector.detect(riscontro,keypoints1);
detector.detect(imagess,keypoints2);
//Initialise wrapping class for descriptors computing using SURF() class.
//FREAK.DescriptorExtractor extractor;
OrbDescriptorExtractor extractor;
//BriefDescriptorExtractor extractor;
//SurfDescriptorExtractor extractor;
//SiftFeatureDetector extractor;
//Compute: Input:image, keypoints Output:descriptors
extractor.compute(riscontro,keypoints1,descriptors1);
extractor.compute(imagess,keypoints2,descriptors2);
if (!descriptors1.empty() & !descriptors2.empty())
{
//Initialise BruteForceMatcher: For each descriptor in the first set, this matcher finds the closest descriptor in the second set by trying each on (=brute)
//cv::BFMatcher matcher(cv::NORM_L2, true);
//FlannBasedMatcher matcher(FLANN_DISTANCE_CHECK);
BFMatcher matcher(NORM_HAMMING2, true);//FlannBasedMatcher matcher; //BFMatcher matcher(NORM_L2);
//std::vector<std::vector< DMatch > > matches;
std::vector< DMatch > matches;
// matcher.knnMatch(descriptors1,descriptors2, matches );
//match: execute the matcher!
matcher.match(descriptors1,descriptors2, matches);
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int ui = 0; ui < descriptors1.rows; ui++ )
{ double dist = matches[ui].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
std::vector< DMatch > good_matches;
/* good_matches.reserve(matches.size());
for (size_t i = 0; i < matches.size(); ++i)
{
if (matches[i].size() < 2)
continue;
const DMatch &m1 = matches[i][0];
const DMatch &m2 = matches[i][1];
if(m1.distance <= nndrRatio * m2.distance)
good_matches.push_back(m1);
}*/
//std::vector<vector<DMatch> > good_matches;
//***** std::vector< DMatch > good_matches;
/* double RatioT = 0.75;
//-- ratio Test
for(int ai=0; ai<matches.size(); ai++)
{
if((matches[ai].size()==1)||(abs(matches[ai][0].distance/matches[ai][1].distance) < RatioT))
{
good_matches.push_back(matches[ai]);
}
}*/
for( int ai = 0; ai < descriptors1.rows; ai++ )
{ if( matches[ai].distance < 3*min_dist ) // <= max(2*min_dist, 0.02) )
{ good_matches.push_back(matches[ai]); }
}
//Draw the matches with drawMatches
//findHomography(riscontro, imagess, CV_RANSAC);
//for(int iw=0;iw<good_matches.size();iw++)
drawMatches(riscontro,keypoints1,imagess,keypoints2,good_matches,target1, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//Size size(640,480);
//resize(target1,target,size);//resize image
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( unsigned int ki = 0; ki < good_matches.size(); ki++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints1[ good_matches[ki].queryIdx ].pt );
scene.push_back( keypoints2[ good_matches[ki].trainIdx ].pt );
kglobalpoint.push_back( keypoints2[ good_matches[ki].trainIdx ].pt );
}
if (obj.size() >= 4){
Mat H = findHomography( obj, scene, CV_LMEDS, 5.0 );
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( riscontro.cols, 0 );
obj_corners[2] = cvPoint( riscontro.cols, riscontro.rows ); obj_corners[3] = cvPoint( 0, riscontro.rows );
std::vector<Point2f> scene_corners(4);
perspectiveTransform( obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
Point2f offset( (float)riscontro.cols, 0);
line( target1, scene_corners[0] + offset, scene_corners[1] + offset, Scalar(0, 255, 0), 4 );
line( target1, scene_corners[1] + offset, scene_corners[2] + offset, Scalar( 0, 255, 0), 4 );
line( target1, scene_corners[2] + offset, scene_corners[3 ...
(more)