1 | initial version |

Hi,I also have the same question and I have my opinion: the [code] is right !. See the link
reference of fisheye model in OpenCV. You will see the *Camera Calibration Toolbox for Matlab* of *Jean-Yves Bouguet* in "project_points_fisheye.m" :

```
%Definitions:
%Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X)
%The coordinate vector of P in the camera reference frame is: Xc = R*X + T
%where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om);
%call x, y and z the 3 coordinates of Xc: x = Xc(1); y = Xc(2); z = Xc(3);
%The pinehole projection coordinates of P is [a;b] where a=x/z and b=y/z.
%call r^2 = a^2 + b^2,
%call theta = atan(r),
%Fisheye distortion -> theta_d = theta * (1 + k(1)*theta^2 + k(2)*theta^4 + k(3)*theta^6 + k(4)*theta^8)
%
%The distorted point coordinates are: xd = [xx;yy] where:
%
%xx = (theta_d / r) * x
%yy = (theta_d / r) * y
%
%Finally, convertion into pixel coordinates: The final pixel coordinates vector xp=[xxp;yyp] where:
%
%xxp = f(1)*(xx + alpha*yy) + c(1)
%yyp = f(2)*yy + c(2)
```

The answer is from *L.Robin*, thanks him.

Copyright OpenCV foundation, 2012-2018. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.