How to input labels for classes in NN. Are they like SVM give different labels to each class. I have not really understood how to create the training class for neural network?
1 | initial version |
How to input labels for classes in NN. Are they like SVM give different labels to each class. I have not really understood how to create the training class for neural network?
2 | No.2 Revision |
How to input labels for classes in NN. Are they like SVM give different labels to each class. I have not really understood how to create the training class for neural network?network? I do not know how to use it for training I have tried the following way:
void mlp(cv::Mat& trainingData, vector<int>& index)
{
int input_neurons = 8;
int hidden_neurons = 100;
int output_neurons = 12;
Mat layerSizes = Mat(3, 1, CV_32SC1);
layerSizes.row(0) = Scalar(input_neurons);
layerSizes.row(1) = Scalar(hidden_neurons);
layerSizes.row(2) = Scalar(output_neurons);
Ptr<ml::ANN_MLP> mlp = ml::ANN_MLP::create();
mlp->setLayerSizes(layerSizes);
mlp->setTrainMethod(ml::ANN_MLP::SIGMOID_SYM);
mlp->setTermCriteria(TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 1000, 0.00001f));
mlp->setTrainMethod(ml::ANN_MLP::BACKPROP,0.1f,0.1f);
mlp->setActivationFunction(ml::ANN_MLP::SIGMOID_SYM, 1, 1);
Mat trainClasses;
cout << "Poker" << endl;
trainClasses.create(trainingData.rows, 12, CV_32FC1);
for (int i = 0; i < trainClasses.rows; i++)
{
trainClasses.at<float>(i, index[i]) = 1.f;
}
cout << "Row of trainClass: " << trainClasses.cols << endl;
cout << "Row of trainData: " << trainingData.cols << endl;
cout << "Koker" << endl;
Ptr<ml::TrainData> td = ml::TrainData::create(trainingData, ml::ROW_SAMPLE, trainClasses);
mlp->train(td);
cout << "Training Done" << endl;
mlp->save("neural_network.xml");
}
When I am predicting, I am getting the following response: [-4.4227011e+0008,-404295997e+008,-4.4214237e+008,-4.3398125e+008,.......]
What is wrong and how to interpret the response from an ANN?
3 | No.3 Revision |
How to input labels for classes in NN. Are they like SVM give different labels to each class. I have not really understood how to create the training class for neural network? I do not know how to use it for training I have tried the following way: void mlp(cv::Mat& trainingData, vector<int>& index) { int input_neurons = 8; int hidden_neurons = 100; int output_neurons = 12; Mat layerSizes = Mat(3, 1, CV_32SC1); layerSizes.row(0) = Scalar(input_neurons); layerSizes.row(1) = Scalar(hidden_neurons); layerSizes.row(2) = Scalar(output_neurons);
Ptr<ml::ANN_MLP> mlp = ml::ANN_MLP::create();
mlp->setLayerSizes(layerSizes);
mlp->setTrainMethod(ml::ANN_MLP::SIGMOID_SYM);
mlp->setTermCriteria(TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 1000, 0.00001f));
mlp->setTrainMethod(ml::ANN_MLP::BACKPROP,0.1f,0.1f);
mlp->setActivationFunction(ml::ANN_MLP::SIGMOID_SYM, 1, 1);
Mat trainClasses;
cout << "Poker" << endl;
trainClasses.create(trainingData.rows, 12, CV_32FC1);
for (int i = 0; i < trainClasses.rows; i++)
{
trainClasses.at<float>(i, index[i]) = 1.f;
}
cout << "Row of trainClass: " << trainClasses.cols << endl;
cout << "Row of trainData: " << trainingData.cols << endl;
cout << "Koker" << endl;
Ptr<ml::TrainData> td = ml::TrainData::create(trainingData, ml::ROW_SAMPLE, trainClasses);
mlp->train(td);
cout << "Training Done" << endl;
mlp->save("neural_network.xml");
}
When I am predicting, I am getting the following response: [-4.4227011e+0008,-404295997e+008,-4.4214237e+008,-4.3398125e+008,.......]
What is wrong and how to interpret the response from an ANN?
4 | No.4 Revision |
How to input labels for classes in NN. Are they like SVM give different labels to each class. I have not really understood how to create the training class for neural network? I do not know how to use it for training I have tried the following way:
way:
void mlp(cv::Mat& trainingData, vector<int>& index)
{
int input_neurons = 8;
int hidden_neurons = 100;
int output_neurons = 12;
Mat layerSizes = Mat(3, 1, CV_32SC1);
layerSizes.row(0) = Scalar(input_neurons);
layerSizes.row(1) = Scalar(hidden_neurons);
layerSizes.row(2) = Scalar(output_neurons);
Scalar(output_neurons);
Ptr<ml::ANN_MLP> mlp = ml::ANN_MLP::create();
mlp->setLayerSizes(layerSizes);
mlp->setTrainMethod(ml::ANN_MLP::SIGMOID_SYM);
mlp->setTermCriteria(TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 1000, 0.00001f));
mlp->setTrainMethod(ml::ANN_MLP::BACKPROP,0.1f,0.1f);
mlp->setActivationFunction(ml::ANN_MLP::SIGMOID_SYM, 1, 1);
Mat trainClasses;
cout << "Poker" << endl;
trainClasses.create(trainingData.rows, 12, CV_32FC1);
for (int i = 0; i < trainClasses.rows; i++)
{
trainClasses.at<float>(i, index[i]) = 1.f;
}
cout << "Row of trainClass: " << trainClasses.cols << endl;
cout << "Row of trainData: " << trainingData.cols << endl;
cout << "Koker" << endl;
Ptr<ml::TrainData> td = ml::TrainData::create(trainingData, ml::ROW_SAMPLE, trainClasses);
mlp->train(td);
cout << "Training Done" << endl;
mlp->save("neural_network.xml");
}
}
When I am predicting, I am getting the following response:
[-4.4227011e+0008,-404295997e+008,-4.4214237e+008,-4.3398125e+008,.......]response:
[-4.4227011e+0008,-404295997e+008,-4.4214237e+008,-4.3398125e+008,.......]
What is wrong and how to interpret the response from an ANN?