I tried with different directives of openmp, but i can't get difference. Or i get errors. (access violation). I am using ms visual studio 2012 (v110) on windows 8.1 . I tried for basic openmp program after changing in configuration of vs 2012. And i got 8 line output. Without enable openmp support, i got one line output. I placed my code here, Please suggest me , where i can use openmp and how.
#include <opencv/highgui.h>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#include <opencv\cv.h>
#include <opencv2\objdetect\objdetect.hpp>
#include <opencv2\imgproc\imgproc.hpp>
#include <opencv2\imgcodecs.hpp>
#include <opencv2\core\core.hpp>
#include <opencv\cvaux.hpp>
#include <fstream>
#include <ctime>
#include <stdio.h>
#include <math.h>
#include <vector>
#include <windows.h>
#include <atlstr.h>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <omp.h>
using namespace cv;
using namespace cv::ml;
using namespace std;
void printDim(Mat mat,const char *name)
{
std::cout<<name<<" :"<<mat.rows<<"x"<<mat.cols<<" depth :"<<mat.depth()<<" channel :"<<mat.channels()<<std::endl;
}
void readData(cv::Mat& data, int cl)
{
vector<const char *> filenames;
filenames.push_back("Data/ik147_1.txt");
filenames.push_back("Data/ik147_2.txt");
filenames.push_back("Data/ik147_3.txt");
vector<Mat> raw_data(cl);//= new std::vector<cv::Mat>(4);
int row;
int i;
double min,max;
#pragma omp parallel for
for( i =0;i<cl;i++)
{
ifstream file( filenames[i] );
while( file>>row )
{
raw_data[i].push_back(row);
}
minMaxLoc(raw_data[i],&min,&max);
cout<<filenames[i]<<" min :"<<min<<", max :"<<max<<std::endl;
}
int N=raw_data[0].rows;
// cv::Mat data(N,3,CV_32FC1);
cout<<"Number of data (row) : "<< N << endl;
int columns_to_read=cl;
data.create(N,columns_to_read,CV_32FC1);
//#pragma omp parallel for private(i)
for( i=0;i<columns_to_read;i++)
{
raw_data[i](Rect(0,0,1,N)).copyTo(data(Rect(i,0,1,N)));
}
}
void resize1(Mat src, string name, string name1)
{
Size size(512,512);//the dst image size,e.g.100x100
Mat dst;
resize(src,dst,size);//resize image
//cout<<"" <<endl;
imshow(name,dst);
imwrite(name1,dst);
}
int main()
{
int fn;
int width, height;
cout << "Enter number of read files :" << endl;
cin>> fn;
cout<< " "<< endl;
cout << "Enter width and height :" << endl;
cin>> width >> height;
cout<< " "<< endl;
cout << "Image has width : " <<width <<" and height : " << height << endl;
cout<< " "<< endl;
LARGE_INTEGER frequency;
LARGE_INTEGER start;
LARGE_INTEGER end;
double interval;
QueryPerformanceFrequency(&frequency);
QueryPerformanceCounter(&start);
Mat image = Mat::zeros(height, width, CV_8UC3);
Mat data1;
readData(data1, fn);
printDim(data1,"data1");
cout << "----------------------- " << endl;
Mat data=data1.clone();
printDim(data,"data");
data1.release();
printDim(data1,"release data1 ");
Mat train_data1 = data.reshape(fn, width ); // Mat train_data1 = data.reshape(3, 512 );
printDim(train_data1, "Dimension of train_data1");
double Min, Max;
minMaxLoc(train_data1, &Min, &Max);
Mat image1;
train_data1.convertTo(image1,CV_8UC3);
imwrite("3channel.jpg",image1);
resize1(image1,"source","source.jpg");
int nthreads;
int i;
int N=data.rows; //number of data points
cout << "N of vv rows:"<< N << endl;
cout <<" "<<endl;
int K=10;
int clusterCount=K;
int sampleCount = N;
Mat labelsMatKMeans;
Mat centers;
/*#pragma omp parallel
{
#pragma omp sections
{
#pragma omp section
{*/
kmeans(data, clusterCount, labelsMatKMeans,
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 0.1),
3, KMEANS_PP_CENTERS, centers);
/*}
}
}*/
cout<< " " << endl;
cout<< "final center :"<<endl;
printDim(centers,"Dim of centers");
cout<< " " << endl;
cout<< "labels :"<<endl;
printDim(labelsMatKMeans,"Dim of labels");
cout<< " " << endl;
for(int y = 0; y < height; y++ )
//#pragma omp for
for(int x = 0; x < width; x++ )
{
// cout<< "("<<y<<" , " << x <<") :"<<" test 1 " << endl;
int cluster_idx = labelsMatKMeans.at<int>(x + y*512,0);
// int cluster_idx = labelsMatKMeans.at<int>(y);
img_kmeans.at<Vec3b>(y,x)[0] = centers.at<float>(cluster_idx, 0);
img_kmeans.at<Vec3b>(y,x)[1] = centers.at<float>(cluster_idx, 1);
img_kmeans.at<Vec3b>(y,x)[2] = centers.at<float>(cluster_idx, 2);
}
printDim(img_kmeans,"img_kmeans");
// imshow("K-Means clustering", img_kmeans);
imwrite("k_means.png",img_kmeans);
resize1(img_kmeans, "dst","dst.png");
QueryPerformanceCounter(&end);
interval = (double) (end.QuadPart - start.QuadPart) / frequency.QuadPart;
cout<<"Time taken : "<< interval << endl;
waitKey(0);
}