Ask Your Question

Revision history [back]

Unhandled exception error for bigger array sizes

Hi I need to create arrays with large sizes and I've written below code. as long as x & y (array size) ate small, there is no problem. but as soon as I enter bigger numbers for them it gives below error and make me break. Unhandled exception at 0x778d15de in twoDacid.exe: 0xC0000005: Access violation.

here is the code:

include "StdAfx.h"

include "math.h"

include "iostream"

include "fstream"

using namespace std;

int _tmain(int argc, _TCHAR* argv[]) { //////////////////////////////////////////////////// constants double poro0=0.2; // initial porosity double mu=0.05; // acid viscusity (cp) double L=0.5; // length of the core (cm) double H=0.5; // width of the core double q=1/60; // injection rate (cm3/s) double A=HH; // core surface area (cm2) double U0=q/A; // initial velocity (cm/s) double r0=1e-4; // initial mean pore radius (cm) double a0=50; // initial interface area per unit volume (cm2/cm3) double k0=1; // initial permeability (md) double C0=0.15; // initial acid concentration (volume fraction)
double ks=0.2; // surface reaction rate constant (cm/s) double Dm=4e-6; // acid diffusivity (cm2/s) double beta=2; // Pore broadening parameter double landaX=0.5; // constant in axial dispersion double landaT=0.1; // constant in Transverse dispersion double alfaos=0.5; // constant in dispersion correlation double alfa=100/2; // gravimetric dissolving power of the acid (gr of rock / mole of acid) here for CaCO3 2moles of acid is... //needed to dissolce 1 mole of rock ////////////// 100(gr/mol)
1mole / 2mole double Pe=0; double Ros=2.71; // solid density (gr/cm3) double Roa=1; // acid density (gr/cm3) supposed to be constant

double phi2P=0.007;  //2*ks*r0/Dm; // pore scale thielie module
double phi2D=1e6;    //ks*a0*L^2/Dm; // Darcy scale thielie module
double Da=ks*a0*L/U0;     // damkohler number
double Nac=0.1;      //alfa*C0/Ros;   // acid capacity number
double eta=2*r0/L;

///////////////////////////////////////////////////// solution parameters
const int x=100;         // number of element in x direction
const int y=100;         // number of element in y direction
double dx=1.0/x;       // x block length (dimless)
double dy=(H/L)/y;
double endt=1;       // end time (s)
double endtD=(endt/L)*U0;  //dimless end time
const int T=100000;         // number of time steps
double dt=endtD/T;   // length of time steps

/////////////////////////////////////// initial valuse for parameters that vary with time:
double r[x][y];
double Av[x][y];
double K[x][y];
double u[x][y];
double Cf[x][y];
double ReP[x][y];
double Sh[x][y];
for (int i=0;i<=x-1;i++){
    for (int j=0;j<=y-1;j++){
        r[i][j]=1;
        Av[i][j]=1;
        K[i][j]=1;
        u[i][j]=1;
        Cf[i][j]=1;
        ReP[i][j]=2*Roa*U0*r0/mu;
        Sh[i][j]=3+7*(sqrt(ReP[i][j]));
    }
}

///////////////////////////////////////////////// heterogenous medium
double poro[x][y];
for (int i=0;i<=x-1;i++){
    for (int j=0;j<=y-1;j++){
        if (j==2 && i==0)
            poro[i][j]=.25;
        else
            poro[i][j]=.2;
    }
}
///////////////////////////////////////////// K, Av, r 
for (int i=0;i<=x-1;i++){
    for (int j=0;j<=y-1;j++){
        K[i][j]=pow((poro[i][j]/poro0)*(((poro[i][j]*(1-poro0)) / (poro0*(1-poro[i][j])))),(2*beta));
        r[i][j]=K[i][j]*poro0/poro[i][j];
        Av[i][j]=poro[i][j]/(poro0*r[i][j]);
    }
}

for (int t=0;t<=0;t++){
    /////////////////////////////////////// P calculation
    double Zm[x*y][x*y];
    for (int i=0;i<=x*y-1;i++){
        for (int j=0;j<=x*y-1;j++){
            Zm[i][j]=0;
        }
    }

    Zm[0][0]=-1/pow(dx,2) - 1/pow(dy,2);
    Zm[0][1]= 1/pow(dy,2);
    Zm[0][y]= 1/pow(dx,2);
    for (int j=1;j<=y-2;j++){
        Zm[j][j]  =-1/pow(dx,2) - 2/pow(dy,2);
        Zm[j][j-1]= 1/pow(dy,2);
        Zm[j][j+1]= 1/pow(dy,2);
        Zm[j][j+y]= 1/pow(dx,2);
    }
    Zm[y-1][y-1]  =-1/pow(dx,2) - 1/pow(dy,2);
    Zm[y-1][y-2]  = 1/pow(dy,2);
    Zm[y-1][y-1+y]= 1/pow(dx,2);

    for (int i=1;i<=(x-2);i++){
        Zm[i*y][i*y]  =-2/pow(dx,2) - 1/pow(dy,2);
        Zm[i*y][i*y+1]= 1/pow(dy,2);
        Zm[i*y][i*y-y]= 1/pow(dx,2);
        Zm[i*y][i*y+y]= 1/pow(dx,2);
        for (int j=1;j<=y-2;j++){
            Zm[i*y+j][i*y+j]  =-2/pow(dx,2) - 2/pow(dy,2);
            Zm[i*y+j][i*y+j-1]= 1/pow(dy,2);
            Zm[i*y+j][i*y+j+1]= 1/pow(dy,2);
            Zm[i*y+j][i*y+j+y]= 1/pow(dx,2);
            Zm[i*y+j][i*y+j-y]= 1/pow(dx,2);
        }
        Zm[i*y+y-1][i*y+y-1]  =-2/pow(dx,2) - 1/pow(dy,2);
        Zm[i*y+y-1][i*y+y-2]  = 1/pow(dy,2);
        Zm[i*y+y-1][i*y+y-1+y]= 1/pow(dx,2);
        Zm[i*y+y-1][i*y+y-1-y]= 1/pow(dx,2);
    }

    Zm[(x-1)*y][(x-1)*y]  =-2/pow(dx,2) - 1/pow(dy,2);
    Zm[(x-1)*y][(x-1)*y+1]=1/pow(dy,2);
    Zm[(x-1)*y][(x-2)*y]  =1/pow(dx,2);
    for (int j=1;j<=y-2;j++){
        Zm[(x-1)*y+j][(x-1)*y+j]  =-2/pow(dx,2) - 2/pow(dy,2);
        Zm[(x-1)*y+j][(x-1)*y+j-1]= 1/pow(dy,2);
        Zm[(x-1)*y+j][(x-1)*y+1+j]= 1/pow(dy,2);
        Zm[(x-1)*y+j][(x-2)*y+j]  = 1/pow(dx,2);
    }
    Zm[y*x-1][y*x-1]  =-1/pow(dx,2) - 1/pow(dy,2);
    Zm[y*x-1][y*x-2]  = 1/pow(dy,2);
    Zm[y*x-1][y*(x-1)-1]= 1/pow(dx,2);

    // output Zm matrix
    ofstream file;
    file.open("Zm.txt");
    for (int i=0;i<y*x;i++){
        for(int j=0;j<y*x;j++){
            file<<Zm[i][j]<<"   ";
        }
        file<<endl;
    }
    file.close();

    // constants matrix



}




//cin>>L;
return 0;

}

Unhandled exception error for bigger array sizes

Hi I need to create arrays with large sizes and I've written below code. as long as x & y (array size) ate small, there is no problem. but as soon as I enter bigger numbers for them it gives below error and make me break. Unhandled exception at 0x778d15de in twoDacid.exe: 0xC0000005: Access violation.

here is the code:

include "StdAfx.h"

include "math.h"

include "iostream"

include "fstream"

#include "StdAfx.h"
#include "math.h"
#include "iostream"
#include "fstream"

using namespace std;

std; int _tmain(int argc, _TCHAR* argv[]) { //////////////////////////////////////////////////// constants double poro0=0.2; // initial porosity double mu=0.05; // acid viscusity (cp) double L=0.5; // length of the core (cm) double H=0.5; // width of the core double q=1/60; // injection rate (cm3/s) double A=HH; double A=H*H; // core surface area (cm2) double U0=q/A; // initial velocity (cm/s) double r0=1e-4; // initial mean pore radius (cm) double a0=50; // initial interface area per unit volume (cm2/cm3) double k0=1; // initial permeability (md) double C0=0.15; // initial acid concentration (volume fraction)
double ks=0.2; // surface reaction rate constant (cm/s) double Dm=4e-6; // acid diffusivity (cm2/s) double beta=2; // Pore broadening parameter double landaX=0.5; // constant in axial dispersion double landaT=0.1; // constant in Transverse dispersion double alfaos=0.5; // constant in dispersion correlation double alfa=100/2; // gravimetric dissolving power of the acid (gr of rock / mole of acid) here for CaCO3 2moles of acid is... //needed to dissolce 1 mole of rock ////////////// 100(gr/mol)
1mole 100(gr/mol)*1mole / 2mole double Pe=0; double Ros=2.71; // solid density (gr/cm3) double Roa=1; // acid density (gr/cm3) supposed to be constant

constant

double phi2P=0.007;  //2*ks*r0/Dm; // pore scale thielie module
double phi2D=1e6;    //ks*a0*L^2/Dm; // Darcy scale thielie module
double Da=ks*a0*L/U0;     // damkohler number
double Nac=0.1;      //alfa*C0/Ros;   // acid capacity number
double eta=2*r0/L;

///////////////////////////////////////////////////// solution parameters
const int x=100;         // number of element in x direction
const int y=100;         // number of element in y direction
double dx=1.0/x;       // x block length (dimless)
double dy=(H/L)/y;
double endt=1;       // end time (s)
double endtD=(endt/L)*U0;  //dimless end time
const int T=100000;         // number of time steps
double dt=endtD/T;   // length of time steps

/////////////////////////////////////// initial valuse for parameters that vary with time:
double r[x][y];
double Av[x][y];
double K[x][y];
double u[x][y];
double Cf[x][y];
double ReP[x][y];
double Sh[x][y];
for (int i=0;i<=x-1;i++){
    for (int j=0;j<=y-1;j++){
        r[i][j]=1;
        Av[i][j]=1;
        K[i][j]=1;
        u[i][j]=1;
        Cf[i][j]=1;
        ReP[i][j]=2*Roa*U0*r0/mu;
        Sh[i][j]=3+7*(sqrt(ReP[i][j]));
    }
}

///////////////////////////////////////////////// heterogenous medium
double poro[x][y];
for (int i=0;i<=x-1;i++){
    for (int j=0;j<=y-1;j++){
        if (j==2 && i==0)
            poro[i][j]=.25;
        else
            poro[i][j]=.2;
    }
}
///////////////////////////////////////////// K, Av, r 
for (int i=0;i<=x-1;i++){
    for (int j=0;j<=y-1;j++){
        K[i][j]=pow((poro[i][j]/poro0)*(((poro[i][j]*(1-poro0)) / (poro0*(1-poro[i][j])))),(2*beta));
        r[i][j]=K[i][j]*poro0/poro[i][j];
        Av[i][j]=poro[i][j]/(poro0*r[i][j]);
    }
}

for (int t=0;t<=0;t++){
    /////////////////////////////////////// P calculation
    double Zm[x*y][x*y];
    for (int i=0;i<=x*y-1;i++){
        for (int j=0;j<=x*y-1;j++){
            Zm[i][j]=0;
        }
    }

    Zm[0][0]=-1/pow(dx,2) - 1/pow(dy,2);
    Zm[0][1]= 1/pow(dy,2);
    Zm[0][y]= 1/pow(dx,2);
    for (int j=1;j<=y-2;j++){
        Zm[j][j]  =-1/pow(dx,2) - 2/pow(dy,2);
        Zm[j][j-1]= 1/pow(dy,2);
        Zm[j][j+1]= 1/pow(dy,2);
        Zm[j][j+y]= 1/pow(dx,2);
    }
    Zm[y-1][y-1]  =-1/pow(dx,2) - 1/pow(dy,2);
    Zm[y-1][y-2]  = 1/pow(dy,2);
    Zm[y-1][y-1+y]= 1/pow(dx,2);

    for (int i=1;i<=(x-2);i++){
        Zm[i*y][i*y]  =-2/pow(dx,2) - 1/pow(dy,2);
        Zm[i*y][i*y+1]= 1/pow(dy,2);
        Zm[i*y][i*y-y]= 1/pow(dx,2);
        Zm[i*y][i*y+y]= 1/pow(dx,2);
        for (int j=1;j<=y-2;j++){
            Zm[i*y+j][i*y+j]  =-2/pow(dx,2) - 2/pow(dy,2);
            Zm[i*y+j][i*y+j-1]= 1/pow(dy,2);
            Zm[i*y+j][i*y+j+1]= 1/pow(dy,2);
            Zm[i*y+j][i*y+j+y]= 1/pow(dx,2);
            Zm[i*y+j][i*y+j-y]= 1/pow(dx,2);
        }
        Zm[i*y+y-1][i*y+y-1]  =-2/pow(dx,2) - 1/pow(dy,2);
        Zm[i*y+y-1][i*y+y-2]  = 1/pow(dy,2);
        Zm[i*y+y-1][i*y+y-1+y]= 1/pow(dx,2);
        Zm[i*y+y-1][i*y+y-1-y]= 1/pow(dx,2);
    }

    Zm[(x-1)*y][(x-1)*y]  =-2/pow(dx,2) - 1/pow(dy,2);
    Zm[(x-1)*y][(x-1)*y+1]=1/pow(dy,2);
    Zm[(x-1)*y][(x-2)*y]  =1/pow(dx,2);
    for (int j=1;j<=y-2;j++){
        Zm[(x-1)*y+j][(x-1)*y+j]  =-2/pow(dx,2) - 2/pow(dy,2);
        Zm[(x-1)*y+j][(x-1)*y+j-1]= 1/pow(dy,2);
        Zm[(x-1)*y+j][(x-1)*y+1+j]= 1/pow(dy,2);
        Zm[(x-1)*y+j][(x-2)*y+j]  = 1/pow(dx,2);
    }
    Zm[y*x-1][y*x-1]  =-1/pow(dx,2) - 1/pow(dy,2);
    Zm[y*x-1][y*x-2]  = 1/pow(dy,2);
    Zm[y*x-1][y*(x-1)-1]= 1/pow(dx,2);

    // output Zm matrix
    ofstream file;
    file.open("Zm.txt");
    for (int i=0;i<y*x;i++){
        for(int j=0;j<y*x;j++){
            file<<Zm[i][j]<<"   ";
        }
        file<<endl;
    }
    file.close();

    // constants matrix



}




//cin>>L;
return 0;

}