Hello OpenCV,
Once again I need your help :)
I want to show an image upper side of my face detect. I search it every where but could not find any way . . .
My code is here bellow plz help how I can display. . .
class FdView extends SampleCvViewBase { private static final String TAG = "Sample::FdView"; private Mat mRgba; private Mat mGray;
private Mat mZoomCorner;
private Mat mZoomWindow;
private Mat mZoomWindow2;
private Mat mResult;
private Mat teplateR;
private Mat teplateL;
private File mCascadeFile;
private CascadeClassifier mJavaDetector;
private CascadeClassifier mCascadeER;
private CascadeClassifier mCascadeEL;
private DetectionBasedTracker mNativeDetector;
private static final Scalar FACE_RECT_COLOR = new Scalar(0, 255, 0, 255);
public static final int JAVA_DETECTOR = 0;
public static final int NATIVE_DETECTOR = 1;
private static final int TM_SQDIFF = 0;
private static final int TM_SQDIFF_NORMED = 1;
private static final int TM_CCOEFF = 2;
private static final int TM_CCOEFF_NORMED = 3;
private static final int TM_CCORR = 4;
private static final int TM_CCORR_NORMED = 5;
private int mDetectorType = JAVA_DETECTOR;
private float mRelativeFaceSize = 0;
private int mAbsoluteFaceSize = 0;
private int learn_frames = 0;
private double match_value;
// private Rect eyearea = new Rect();
public void setMinFaceSize(float faceSize)
{
mRelativeFaceSize = faceSize;
mAbsoluteFaceSize = 0;
}
public void setDetectorType(int type)
{
if (mDetectorType != type)
{
mDetectorType = type;
if (type == NATIVE_DETECTOR)
{
Log.i(TAG, "Detection Based Tracker enabled");
mNativeDetector.start();
}
else
{
Log.i(TAG, "Cascade detector enabled");
mNativeDetector.stop();
}
}
}
public void resetLearFramesCount()
{
learn_frames = 0;
}
public FdView(Context context) {
super(context);
try {
InputStream is = context.getResources().openRawResource(R.raw.lbpcascade_frontalface);
File cascadeDir = context.getDir("cascade", Context.MODE_PRIVATE);
mCascadeFile = new File(cascadeDir, "lbpcascade_frontalface.xml");
FileOutputStream os = new FileOutputStream(mCascadeFile);
byte[] buffer = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) != -1) {
os.write(buffer, 0, bytesRead);
}
is.close();
os.close();
// --------------------------------- load left eye classificator -----------------------------------
InputStream iser = context.getResources().openRawResource(R.raw.haarcascade_lefteye_2splits);
File cascadeDirER = context.getDir("cascadeER", Context.MODE_PRIVATE);
File cascadeFileER = new File(cascadeDirER, "haarcascade_eye_right.xml");
FileOutputStream oser = new FileOutputStream(cascadeFileER);
byte[] bufferER = new byte[4096];
int bytesReadER;
while ((bytesReadER = iser.read(bufferER)) != -1) {
oser.write(bufferER, 0, bytesReadER);
}
iser.close();
oser.close();
//----------------------------------------------------------------------------------------------------
// --------------------------------- load right eye classificator ------------------------------------
InputStream isel = context.getResources().openRawResource(R.raw.haarcascade_lefteye_2splits);
File cascadeDirEL = context.getDir("cascadeEL", Context.MODE_PRIVATE);
File cascadeFileEL = new File(cascadeDirEL, "haarcascade_eye_left.xml");
FileOutputStream osel = new FileOutputStream(cascadeFileEL);
byte[] bufferEL = new byte[4096];
int bytesReadEL;
while ((bytesReadEL = isel.read(bufferEL)) != -1) {
osel.write(bufferEL, 0, bytesReadEL);
}
isel.close();
osel.close();
// ------------------------------------------------------------------------------------------------------
mJavaDetector = new CascadeClassifier(mCascadeFile.getAbsolutePath());
mCascadeER = new CascadeClassifier(cascadeFileER.getAbsolutePath());
mCascadeEL = new CascadeClassifier(cascadeFileER.getAbsolutePath());
if (mJavaDetector.empty()|| mCascadeER.empty() || mCascadeEL.empty()) {
Log.e(TAG, "Failed to load cascade classifier");
mJavaDetector = null;
mCascadeER=null;
mCascadeEL=null;
} else
Log.i(TAG, "Loaded cascade classifier from " + mCascadeFile.getAbsolutePath());
mNativeDetector = new DetectionBasedTracker(mCascadeFile.getAbsolutePath(), 0);
cascadeDir.delete();
cascadeFileER.delete();
cascadeDirER.delete();
cascadeFileEL.delete();
cascadeDirEL.delete();
} catch (IOException e) {
e.printStackTrace();
Log.e(TAG, "Failed to load cascade. Exception thrown: " + e);
}
}
@Override
public void surfaceCreated(SurfaceHolder holder) {
synchronized (this) {
// initialize Mats before usage
mGray = new Mat();
mRgba = new Mat();
//images = new Mat();
}
super.surfaceCreated(holder);
}
@Override
protected Bitmap processFrame(VideoCapture capture) {
capture.retrieve(mRgba, Highgui.CV_CAP_ANDROID_COLOR_FRAME_RGBA);
capture.retrieve(mGray, Highgui.CV_CAP_ANDROID_GREY_FRAME);
if (mAbsoluteFaceSize == 0)
{
int height = mGray.rows();
if (Math.round(height * mRelativeFaceSize) > 0);
{
mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);
}
mNativeDetector.setMinFaceSize(mAbsoluteFaceSize);
}
MatOfRect faces = new MatOfRect();
if (mDetectorType == JAVA_DETECTOR)
{
if (mJavaDetector != null)
mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2, 2 // TODO: objdetect.CV_HAAR_SCALE_IMAGE
, new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size());
if (mZoomCorner == null || mZoomWindow == null)
CreateAuxiliaryMats();
Rect[] facesArray = faces.toArray();
for (int i = 0; i < facesArray.length; i++){
Rect r = facesArray[i];
Core.rectangle(mGray, r.tl(), r.br(), new Scalar(0, 255, 0, 255), 3);
Core.rectangle(mRgba, r.tl(), r.br(), new Scalar(0, 255, 0, 255), 3);
// eyearea = new Rect(r.x +r.width/8,(int)(r.y + (r.height/4.5)),r.width - 2*r.width/8,(int)( r.height/3.0));
// Core.rectangle(mRgba,eyearea.tl(),eyearea.br() , new Scalar(255,0, 0, 255), 2);
Rect eyearea_right = new Rect(r.x +r.width/16,(int)(r.y + (r.height/4.5)),(r.width - 2*r.width/16)/2,(int)( r.height/3.0));
Rect eyearea_left = new Rect(r.x +r.width/16 +(r.width - 2*r.width/16)/2,(int)(r.y + (r.height/4.5)),(r.width - 2*r.width/16)/2,(int)( r.height/3.0));
Core.rectangle(mRgba,eyearea_left.tl(),eyearea_left.br() , new Scalar(255,0, 0, 255), 2);
Core.rectangle(mRgba,eyearea_right.tl(),eyearea_right.br() , new Scalar(255, 0, 0, 255), 2);
if(learn_frames<5){
teplateR = get_template(mCascadeER,eyearea_right,24);
teplateL = get_template(mCascadeEL,eyearea_left,24);
learn_frames++;
}else{
match_value = match_eye(eyearea_right,teplateR,FdActivity.method);
match_value = match_eye(eyearea_left,teplateL,FdActivity.method);
;
}
Imgproc.resize(mRgba.submat(eyearea_left), mZoomWindow2, mZoomWindow2.size());
Imgproc.resize(mRgba.submat(eyearea_right), mZoomWindow, mZoomWindow.size());
}
}
else if (mDetectorType == NATIVE_DETECTOR)
{
if (mNativeDetector != null)
mNativeDetector.detect(mGray, faces);
}
else
{
Log.e(TAG, "Detection method is not selected!");
}
Rect[] facesArray = faces.toArray();
for (int i = 0; i < facesArray.length; i++)
Core.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR, 3);
Bitmap bmp = Bitmap.createBitmap(mRgba.cols(), mRgba.rows(), Bitmap.Config.ARGB_8888);
try {
Utils.matToBitmap(mRgba, bmp);
} catch(Exception e) {
Log.e(TAG, "Utils.matToBitmap() throws an exception: " + e.getMessage());
bmp.recycle();
bmp = null;
}
return bmp;
}
private void CreateAuxiliaryMats() {
if (mGray.empty())
return;
int rows = mGray.rows();
int cols = mGray.cols();
if (mZoomWindow == null){
mZoomWindow = mRgba.submat(rows / 2 + rows / 10 ,rows , cols / 2 + cols / 10, cols );
mZoomWindow2 = mRgba.submat(0, rows / 2 - rows / 10 , cols / 2 + cols / 10, cols );
}
}
private double match_eye(Rect area, Mat mTemplate,int type){
Point matchLoc;
Mat mROI = mGray.submat(area);
int result_cols = mGray.cols() - mTemplate.cols() + 1;
int result_rows = mGray.rows() - mTemplate.rows() + 1;
if(mTemplate.cols()==0 ||mTemplate.rows()==0){
return 0.0;
}
mResult = new Mat(result_cols,result_rows, CvType.CV_32FC1);
switch (type){
case TM_SQDIFF:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_SQDIFF) ;
break;
case TM_SQDIFF_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_SQDIFF_NORMED) ;
break;
case TM_CCOEFF:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCOEFF) ;
break;
case TM_CCOEFF_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCOEFF_NORMED) ;
break;
case TM_CCORR:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCORR) ;
break;
case TM_CCORR_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCORR_NORMED) ;
break;
}
Core.MinMaxLocResult mmres = Core.minMaxLoc(mResult);
if(type == TM_SQDIFF || type == TM_SQDIFF_NORMED)
{ matchLoc = mmres.minLoc; }
else
{ matchLoc = mmres.maxLoc; }
Point matchLoc_tx = new Point(matchLoc.x+area.x,matchLoc.y+area.y);
Point matchLoc_ty = new Point(matchLoc.x + mTemplate.cols() + area.x , matchLoc.y + mTemplate.rows()+area.y );
Core.rectangle(mRgba, matchLoc_tx,matchLoc_ty, new Scalar(255, 255, 0, 255));
if(type == TM_SQDIFF || type == TM_SQDIFF_NORMED)
{ return mmres.maxVal; }
else
{ return mmres.minVal; }
}
private Mat get_template(CascadeClassifier clasificator, Rect area,int size){
Mat template = new Mat();
Mat mROI = mGray.submat(area);
MatOfRect eyes = new MatOfRect();
Point iris = new Point();
Rect eye_template = new Rect();
clasificator.detectMultiScale(mROI, eyes, 1.15, 2,Objdetect.CASCADE_FIND_BIGGEST_OBJECT|Objdetect.CASCADE_SCALE_IMAGE, new Size(30,30),new Size());
Rect[] eyesArray = eyes.toArray();
for (int i = 0; i < eyesArray.length;){
Rect e = eyesArray[i];
e.x = area.x + e.x;
e.y = area.y + e.y;
Rect eye_only_rectangle = new Rect((int)e.tl().x,(int)( e.tl().y + e.height*0.4),(int)e.width,(int)(e.height*0.6));
mROI = mGray.submat(eye_only_rectangle);
Mat vyrez = mRgba.submat(eye_only_rectangle);
Core.MinMaxLocResult mmG = Core.minMaxLoc(mROI);
Core.circle(vyrez, mmG.minLoc,2, new Scalar(255, 255, 255, 255),2);
iris.x = mmG.minLoc.x + eye_only_rectangle.x;
iris.y = mmG.minLoc.y + eye_only_rectangle.y;
eye_template = new Rect((int)iris.x-size/2,(int)iris.y-size/2 ,size,size);
Core.rectangle(mRgba,eye_template.tl(),eye_template.br(),new Scalar(255, 0, 0, 255), 2);
template = (mGray.submat(eye_template)).clone();
return template;
}
return template;
}
public static Mat loadOpenCvImage(final String filePath) {
Mat imgMat = Highgui.imread(filePath, Highgui.CV_LOAD_IMAGE_GRAYSCALE);
if (imgMat == null) {
Log.e(TAG, "error loading file: " + filePath);
} else {
Log.d(TAG, "Ht: " + imgMat.height() + " Width: " + imgMat.width());
final String outPath = filePath + "_gray.jpg";
Log.d(TAG, outPath);
Highgui.imwrite(outPath, imgMat);
}
return imgMat;
}
@Override
public void run() {
super.run();
synchronized (this) {
// Explicitly deallocate Mats
if (mRgba != null)
mRgba.release();
if (mGray != null)
mGray.release();
if (mCascadeFile != null)
mCascadeFile.delete();
if (mNativeDetector != null)
mNativeDetector.release();
mRgba = null;
mGray = null;
mCascadeFile = null;
}
}
}
And this is my SampleCvViewBase Class
public abstract class SampleCvViewBase extends SurfaceView implements SurfaceHolder.Callback, Runnable { private static final String TAG = "Sample::SurfaceView";
private SurfaceHolder mHolder;
private VideoCapture mCamera;
// private FpsMeter mFps;
Context cntxt;
public SampleCvViewBase(Context context) {
super(context);
mHolder = getHolder();
mHolder.addCallback(this);
// mFps = new FpsMeter();
this.cntxt=context;
Log.i(TAG, "Instantiated new " + this.getClass());
}
public boolean openCamera() {
Log.i(TAG, "openCamera");
synchronized (this) {
releaseCamera();
mCamera = mCamera = new VideoCapture(Highgui.CV_CAP_ANDROID+1);
if (!mCamera.isOpened()) {
mCamera.release();
mCamera = null;
Log.e(TAG, "Failed to open native camera");
return false;
}
}
return true;
}
public void releaseCamera() {
Log.i(TAG, "releaseCamera");
synchronized (this) {
if (mCamera != null) {
mCamera.release();
mCamera = null;
}
}
}
public void setupCamera(int width, int height) {
Log.i(TAG, "setupCamera("+width+", "+height+")");
synchronized (this) {
if (mCamera != null && mCamera.isOpened()) {
List<Size> sizes = mCamera.getSupportedPreviewSizes();
int mFrameWidth = width;
int mFrameHeight = height;
// selecting optimal camera preview size
{
double minDiff = Double.MAX_VALUE;
for (Size size : sizes) {
if (Math.abs(size.height - height) < minDiff) {
mFrameWidth = (int) size.width;
mFrameHeight = (int) size.height;
minDiff = Math.abs(size.height - height);
}
}
}
mCamera.set(Highgui.CV_CAP_PROP_FRAME_WIDTH, mFrameWidth);
mCamera.set(Highgui.CV_CAP_PROP_FRAME_HEIGHT, mFrameHeight);
}
}
}
public void surfaceChanged(SurfaceHolder _holder, int format, int width, int height) {
Log.i(TAG, "surfaceChanged");
setupCamera(width, height);
/* switch (((Activity) cntxt).getWindowManager().getDefaultDisplay().getRotation()) {
case 0:
((Object) mCamera).setDisplayOrientation(90);
break;
case 1:
((Object) mCamera).setDisplayOrientation(0);
break;
case 2:
((Object) mCamera).setDisplayOrientation(180);
break;
}
} */
}
public void surfaceCreated(SurfaceHolder holder) {
Log.i(TAG, "surfaceCreated");
(new Thread(this)).start();
}
public void surfaceDestroyed(SurfaceHolder holder) {
Log.i(TAG, "surfaceDestroyed");
releaseCamera();
}
protected abstract Bitmap processFrame(VideoCapture capture);
public void run() {
Log.i(TAG, "Starting processing thread");
// mFps.init();
while (true) {
Bitmap bmp = null;
synchronized (this) {
if (mCamera == null)
break;
if (!mCamera.grab()) {
Log.e(TAG, "mCamera.grab() failed");
break;
}
bmp = processFrame(mCamera);
// mFps.measure();
}
if (bmp != null) {
Canvas canvas = mHolder.lockCanvas();
if (canvas != null) {
canvas.drawBitmap(bmp, (canvas.getWidth() - bmp.getWidth()) / 2, (canvas.getHeight() - bmp.getHeight()) / 2, null);
// mFps.draw(canvas, (canvas.getWidth() - bmp.getWidth()) / 2, 0);
mHolder.unlockCanvasAndPost(canvas);
}
bmp.recycle();
}
}
Log.i(TAG, "Finishing processing thread");
}
}