Hi there! I'm new to OpenCV and C++ and I'm trying to build a classifier using Gaussian Mixture Model within the OpenCV. I figured out how it works and got it worked ... maybe. I got something like this now:
If I classify the training samples just after the model was trained and saved, I got the result I want. But when I reclassify my training data using the read(), one of the clusters is missing, means I got different cluster result from the same GMM model. I don't get it now because the cluster I want was gone, I can't reproduce the classification again until I retrained the model using the same data. I checked the code in runtime and the result valule in the Vec2d from <log, result=""> which predict() returned was never assigned to 1 (I set 3 clusters).
Maybe there's a bug or I did something wrong?
My programs like this:
train part
void GaussianMixtureModel::buildGMM(InputArray _src){
//use source to train GMM and save the model
Mat samples, input = _src.getMat();
createSamples(input, samples);
bool status = em_model.train(samples);
saveModel();
}
save/load the model
FileStorage fs(filename, FileStorage::READ);
if (fs.isOpened()) // if we have file with parameters, read them
{
const FileNode& fn = fs["StatModel.EM"];
em_model.read(fn);
fs.release();
}
FileStorage fs_save(filename, FileStorage::WRITE);
if (fs_save.isOpened()) // if we have file with parameters, read them
{
em_model.write(fs_save);
fs_save.release();
}
predict part
vector<Mat> GaussianMixtureModel::classify(Mat input){
/// samples is a matrix of channels x N elements, each row is a set of feature
Mat samples;
createSamples(input, samples);
for (int k = 0; k < clusterN; k++){
masks[k] = Mat::zeros(input.size(), CV_8UC1);
}
int idx = 0;
for (int i = 0; i < input.rows; i++){
for (int j = 0; j < input.cols; j++){
//process the predicted probability
Mat probs(1, clusterN, CV_64FC1);
Vec2d response = em_model.predict(samples.row(idx++), probs);
int result = cvRound(response[1]);
for (int k = 0; k < clusterN; k++){
if (result == k){
// change to the k-th class's picture
masks[k].at<uchar>(i, j) = 255;
}
...
// something else
}
}
}
}