Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Best method for multiple particle tracking with noise and possible overlap?

Hello, I am working on a school project where I want to track the number, direction, and velocity of particles moving across a flow chamber. I have a series of timestamped images which were taken under florescent light showing bright particles flowing over a view field.

The particles I'm interested in tracking are the bright round dots (highlighted in green), while excluding motion blur from other particles that were not in focus.

Image Showing: Sample (green) vs Noise (red)

Here is a series of sample images from the data set: Sample Data

I have started working with both optical flow examples from the docs but they pick up all of the noise as tracks which I need to avoid. What method would you recommend for this application?

Best method for multiple particle tracking with noise and possible overlap?

Hello, I am working on a school project where I want to track the number, direction, and velocity of particles moving across a flow chamber. I have a series of timestamped images which were taken under florescent light showing bright particles flowing over a view field.

The particles I'm interested in tracking are the bright round dots (highlighted in green), while excluding motion blur from other particles that were not in focus.

Image Showing: Sample (green) vs Noise (red)Image Showing: Sample (green) vs Noise (red)

Here is a series of sample images from the data set: Sample Data

I have started working with both optical flow examples from the docs but they pick up all of the noise as tracks which I need to avoid. What method would you recommend for this application?

Best method for multiple particle tracking with noise and possible overlap?

Hello, I am working on a school project where I want to track the number, direction, and velocity of particles moving across a flow chamber. I have a series of timestamped images which were taken under florescent light showing bright particles flowing over a view field.

The particles I'm interested in tracking are the bright round dots (highlighted in green), while excluding motion blur from other particles that were not in focus.

Image Showing: Sample (green) vs Noise (red)

Here is a series of sample images from the data set: Sample Data

I have started working with both optical flow examples from the docs but they pick up all of the noise as tracks which I need to avoid. What method would you recommend for this application?

Best method for multiple particle tracking with noise and possible overlap?

Hello, I am working on a school project where I want to track the number, direction, and velocity of particles moving across a flow chamber. I have a series of timestamped images which were taken under florescent light showing bright particles flowing over a view field.

The particles I'm interested in tracking are the bright round dots (highlighted in green), while excluding motion blur from other particles that were not in focus.

Image Showing: Sample (green) vs Noise (red)

Here is a series of sample images from the data set: Sample Data

I have started working with both optical flow examples from the docs but they pick up all of the noise as tracks which I need to avoid. What method would you recommend for this application?

Best method for multiple particle tracking with noise and possible overlap?

Hello, I am working on a school project where I want to track the number, direction, and velocity of particles moving across a flow chamber. I have a series of timestamped images which were taken under florescent light showing bright particles flowing over a view field.

The particles I'm interested in tracking are the bright round dots (highlighted in green), while excluding motion blur from other particles that were not in focus.

Image Showing: Sample (green) vs Noise (red)

Here is a series of sample images from the data set: Sample Data

I have started working with both optical flow examples from the docs but they pick up all of the noise as tracks which I need to avoid. What method would you recommend for this application?

Best method for multiple particle tracking with noise and possible overlap?

Hello, I am working on a school project where I want to track the number, direction, and velocity of particles moving across a flow chamber. I have a series of timestamped images which were taken under florescent light showing bright particles flowing over a view field.

The particles I'm interested in tracking are the bright round dots (highlighted in green), while excluding motion blur from other particles that were not in focus.

Image Showing: Sample (green) vs Noise (red)

Here is a series of sample images from the data set: Sample Data

I have started working with both optical flow examples from the docs but they pick up all of the noise as tracks which I need to avoid. What method would you recommend for this application?

Best method for multiple particle tracking with noise and possible overlap?

Hello, I am working on a school project where I want to track the number, direction, and velocity of particles moving across a flow chamber. I have a series of timestamped images which were taken under florescent light showing bright particles flowing over a view field.

The particles I'm interested in tracking are the bright round dots (highlighted in green), while excluding motion blur from other particles that were not in focus.

Image Showing: Sample (green) vs Noise (red)

Here is a series of sample images from the data set: Sample Data

I have started working with both optical flow examples from the docs but they pick up all of the noise as tracks which I need to avoid. What method would you recommend for this application?

lk_params = dict( winSize  = (10, 10),
              maxLevel = 5,
              criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

feature_params = dict( maxCorners = 3000,
                       qualityLevel = 0.5,
                       minDistance = 3,
                       blockSize = 3 )

class App:
    def __init__(self, video_src):
        self.track_len = 50
        self.detect_interval = 1
        self.tracks = []
        self.allTracks = []
        self.cam = video.create_capture(video_src)
        self.frame_idx = 0

def run(self):
    maxFrame = 10000
    while True:
        ret, frame = self.cam.read()
        if frame == None:
            break
        if self.frame_idx > maxFrame:
            break
        if frame.shape[2] == 3:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(4,4))
            tophat1 = cv2.morphologyEx(frame, cv2.MORPH_TOPHAT, kernel)


            ret, frame_gray = cv2.threshold(tophat1, 127, 255, cv2.THRESH_BINARY)
        else: break
        vis = cv2.cvtColor(frame_gray, cv2.COLOR_GRAY2BGR)
        if len(self.tracks) > 0:
            img0, img1 = self.prev_gray, frame_gray
            p0 = np.float32([tr[-1] for tr in self.tracks]).reshape(-1, 1, 2)
            p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
            p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
            d = abs(p0-p0r).reshape(-1, 2).max(-1)
            good = d < 1
            new_tracks = []
            for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
                if not good_flag:
                    continue
                tr.append((x, y))
                if len(tr) > self.track_len:
                    del tr[0]
                new_tracks.append(tr)
                cv2.circle(vis, (x, y), 2, (0, 255, 0), -1)
            self.tracks = new_tracks
            cv2.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 255, 0))
            draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks))

        if self.frame_idx % self.detect_interval == 0:
            mask = np.zeros_like(frame_gray)
            mask[:] = 255
            for x, y in [np.int32(tr[-1]) for tr in self.tracks]:
                cv2.circle(mask, (x, y), 5, 0, -1)
            p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
            if p is not None:
                for x, y in np.float32(p).reshape(-1, 2):
                    self.tracks.append([(x, y)])


        self.frame_idx += 1
        self.prev_gray = frame_gray
        cv2.imshow('lk_track', vis)
        self.allTracks.extend(self.tracks)
        ch = 0xFF & cv2.waitKey(1)
        if ch == 27:
            break

    return self.allTracks

Best method for multiple particle tracking with noise and possible overlap?

Hello, I am working on a school project where I want to track the number, direction, and velocity of particles moving across a flow chamber. I have a series of timestamped images which were taken under florescent light showing bright particles flowing over a view field.

The particles I'm interested in tracking are the bright round dots (highlighted in green), while excluding motion blur from other particles that were not in focus.

Image Showing: Sample (green) vs Noise (red)

Here is a series of sample images from the data set: Sample Data

I have started working with both optical flow examples from the docs but they pick up all of the noise as tracks which I need to avoid. What method would you recommend for this application?

EDIT: Using the suggestion below I've added a tophat filter before running the sequence through an Lukas Kanade Motion Tracker. I just modified it slightly to return all of the tracks it picks up, and then I go through them to remove duplicates, and calculate velocities for each tracked particle.

This method still seems to pick up a lot of noise in the data, perhaps I haven't used optimal parameters for the LK filter?

lk_params = dict( winSize  = (10, 10),
              maxLevel = 5,
              criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

feature_params = dict( maxCorners = 3000,
                       qualityLevel = 0.5,
                       minDistance = 3,
                       blockSize = 3 )

class App:
    def __init__(self, video_src):
        self.track_len = 50
        self.detect_interval = 1
        self.tracks = []
        self.allTracks = []
        self.cam = video.create_capture(video_src)
        self.frame_idx = 0

def run(self):
    maxFrame = 10000
    while True:
        ret, frame = self.cam.read()
        if frame == None:
            break
        if self.frame_idx > maxFrame:
            break
        if frame.shape[2] == 3:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(4,4))
            tophat1 = cv2.morphologyEx(frame, cv2.MORPH_TOPHAT, kernel)


            ret, frame_gray = cv2.threshold(tophat1, 127, 255, cv2.THRESH_BINARY)
        else: break
        vis = cv2.cvtColor(frame_gray, cv2.COLOR_GRAY2BGR)
        if len(self.tracks) > 0:
            img0, img1 = self.prev_gray, frame_gray
            p0 = np.float32([tr[-1] for tr in self.tracks]).reshape(-1, 1, 2)
            p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
            p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
            d = abs(p0-p0r).reshape(-1, 2).max(-1)
            good = d < 1
            new_tracks = []
            for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
                if not good_flag:
                    continue
                tr.append((x, y))
                if len(tr) > self.track_len:
                    del tr[0]
                new_tracks.append(tr)
                cv2.circle(vis, (x, y), 2, (0, 255, 0), -1)
            self.tracks = new_tracks
            cv2.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 255, 0))
            draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks))

        if self.frame_idx % self.detect_interval == 0:
            mask = np.zeros_like(frame_gray)
            mask[:] = 255
            for x, y in [np.int32(tr[-1]) for tr in self.tracks]:
                cv2.circle(mask, (x, y), 5, 0, -1)
            p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
            if p is not None:
                for x, y in np.float32(p).reshape(-1, 2):
                    self.tracks.append([(x, y)])


        self.frame_idx += 1
        self.prev_gray = frame_gray
        cv2.imshow('lk_track', vis)
        self.allTracks.extend(self.tracks)
        ch = 0xFF & cv2.waitKey(1)
        if ch == 27:
            break

    return self.allTracks