I am trying to write a python program to track a user's head movement based on a single point between their eyes. I am using OpenCV 2.4.5 and calcOpticalFlowPyrLK. I set the initial point using HAAR points, and the initial point is correct, but after the first call to calcOpticalFlowPyrLK the program is now tracking a completely different point. I'm not very familiar with computer vision, so I can't figure out why its losing the initial point.
I'm using python 2.7, Fedora 18, and OpenCV 2.4.5.
My code:
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
# loading the classifiers
hcf = cv2.CascadeClassifier('/usr/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml')
hce = cv2.CascadeClassifier('/usr/share/OpenCV/haarcascades/haarcascade_eye.xml')
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
first = True
while(1):
#Get new frame
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#First iteration, calcualte the face
if(first):
first = False
faces = hcf.detectMultiScale(frame_gray, minSize=(100, 100))
face = faces[0]
print face[0],face[1],face[2],face[3]
p0 = [[((face[0] + (face[2]/2)),(face[1] + (face[3]/3)))]]
p0 = np.float32(np.asarray(p0))
print "p0", p0
#cv2.rectangle(frame,(face[0], face[1]), (face[0] + face[2], face[1] + face[3]),(155, 255, 25),2)
#Draw circle at initial point
cv2.circle(frame,((face[0] + (face[2]/2)),(face[1] + (face[3]/3))),5,(155, 255, 25))
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
if st==1:
good_new = p1[st==1]
good_old = p0[st==1]
# draw the tracks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
cv2.imshow('frame',frame)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
if st==1:
p0 = good_new.reshape(-1,1,2)
cv2.destroyAllWindows()
cap.release()