Please any help to segment this image using clor filter.
1 | initial version |
Please any help to segment this image using clor filter.
Please any help to segment this image using clor filter.
Please any help to segment this image using clor filter.
int main() { Mat large = imread("result.png"); Mat rgb; // downsample and use it for processing pyrDown(large, rgb); Mat small; cvtColor(rgb, small, CV_BGR2GRAY); // morphological gradient Mat grad; Mat morphKernel = getStructuringElement(MORPH_ELLIPSE, Size(3, 3)); morphologyEx(small, grad, MORPH_GRADIENT, morphKernel); // binarize Mat bw; threshold(grad, bw, 0.0, 255.0, THRESH_BINARY | THRESH_OTSU); // connect horizontally oriented regions Mat connected; morphKernel = getStructuringElement(MORPH_RECT, Size(9, 1)); morphologyEx(bw, connected, MORPH_CLOSE, morphKernel); // find contours Mat mask = Mat::zeros(bw.size(), CV_8UC1); vector<vector<Point>> contours; vector<Vec4i> hierarchy; findContours(connected, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0)); // filter contours for(int idx = 0; idx >= 0; idx = hierarchy[idx][0]) {
Rect rect = boundingRect(contours[idx]);
Mat maskROI(mask, rect);
maskROI = Scalar(0, 0, 0);
// fill the contour
drawContours(mask, contours, idx, Scalar(255, 255, 255), CV_FILLED);
// ratio of non-zero pixels in the filled region
double r = (double)countNonZero(maskROI)/(rect.width*rect.height);
if (r > .45 /* assume at least 45% of the area is filled if it contains text */
&&
(rect.height > 8 && rect.width > 8) /* constraints on region size */
/* these two conditions alone are not very robust. better to use something
like the number of significant peaks in a horizontal projection as a third condition */
)
{
rectangle(rgb, rect, Scalar(0, 255, 0), 2);
} } imwrite(OUTPUT_FOLDER_PATH + string("rgb.jpg"), rgb);
imshow("a", rgb); waitKey(); return 0; }
Please any help to segment this image using clor filter.
int main() { Mat large = imread("result.png"); imread("result.png");
Mat rgb; // downsample and use it for processing pyrDown(large, rgb); Mat small; cvtColor(rgb, small, CV_BGR2GRAY); // morphological gradient Mat grad;
Mat grad;
Mat morphKernel = getStructuringElement(MORPH_ELLIPSE, Size(3, 3)); morphologyEx(small, grad, MORPH_GRADIENT, morphKernel); // binarize Mat bw; threshold(grad, bw, 0.0, 255.0, THRESH_BINARY | THRESH_OTSU); // connect horizontally oriented regions Mat connected; morphKernel = getStructuringElement(MORPH_RECT, Size(9, 1)); morphologyEx(bw, connected, MORPH_CLOSE, morphKernel); // find contours Mat mask = Mat::zeros(bw.size(), CV_8UC1); vector<vector<Point>> contours; vector<Vec4i> hierarchy; findContours(connected, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0)); 0));
// filter contours for(int idx = 0; idx >= 0; idx = hierarchy[idx][0]) {
Rect rect = boundingRect(contours[idx]);
Mat maskROI(mask, rect);
maskROI = Scalar(0, 0, 0);
// fill the contour
drawContours(mask, contours, idx, Scalar(255, 255, 255), CV_FILLED);
// ratio of non-zero pixels in the filled region
double r = (double)countNonZero(maskROI)/(rect.width*rect.height);
if (r > .45 /* assume at least 45% of the area is filled if it contains text */
&&
(rect.height > 8 && rect.width > 8) /* constraints on region size */
/* these two conditions alone are not very robust. better to use something
like the number of significant peaks in a horizontal projection as a third condition */
)
{
rectangle(rgb, rect, Scalar(0, 255, 0), 2);
} } imwrite(OUTPUT_FOLDER_PATH + string("rgb.jpg"), rgb);
imshow("a", rgb); waitKey(); return 0; }