I used this code for dataset recognition :
#
Modified by Nazmi Asri
Original code: http://thecodacus.com/
All right reserved to the respective owner
#
Import OpenCV2 for image processing
import cv2
Start capturing video
vid_cam = cv2.VideoCapture(0)
Detect object in video stream using Haarcascade Frontal Face
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
For each person, one face id
face_id = 1
Initialize sample face image
count = 0
Start looping
while(True):
# Capture video frame
_, image_frame = vid_cam.read()
# Convert frame to grayscale
gray = cv2.cvtColor(image_frame, cv2.COLOR_BGR2GRAY)
# Detect frames of different sizes, list of faces rectangles
faces = face_detector.detectMultiScale(gray, 1.3, 5)
# Loops for each faces
for (x,y,w,h) in faces:
# Crop the image frame into rectangle
cv2.rectangle(image_frame, (x,y), (x+w,y+h), (255,0,0), 2)
# Increment sample face image
count += 1
# Save the captured image into the datasets folder
cv2.imwrite("dataset/User." + str(face_id) + '.' + str(count) + ".jpg", gray[y:y+h,x:x+w])
# Display the video frame, with bounded rectangle on the person's face
cv2.imshow('frame', image_frame)
# To stop taking video, press 'q' for at least 100ms
if cv2.waitKey(100) & 0xFF == ord('q'):
break
# If image taken reach 100, stop taking video
elif count>100:
break
Stop video
vid_cam.release()
Close all started windows
cv2.destroyAllWindows()
sometime i got stuck in : cv2.waitKey(100) & 0xFF == ord('q'): break Most of time i got stuck in: faces = face_detector.detectMultiScale(gray, 1.3, 5)