net = tf.layers.conv2d(inputs = features, filters = 64, kernel_size = [3, 3], strides = (2, 2), padding = 'same')
training = tf.placeholder(tf.bool, tf.Variable(False, name = 'training')
net = tf.contrib.layers.batch_norm(net, is_training = training)
net = tf.nn.relu(net)
net = tf.reshape(net, [-1, 64 * 7 * 7]) #
net = tf.layers.dense(inputs = net, units = class_num, kernel_initializer = tf.contrib.layers.xavier_initializer(), name = 'regression_output')
#......
#after training, save the graph and weights
sess.run(loss, feed_dict={features : train_imgs, x : real_delta, training : False})
saver = tf.train.Saver()
saver.save(sess, 'reshape_final.ckpt')
tf.train.write_graph(sess.graph.as_graph_def(), "", 'graph_final.pb')
After that, I freeze the graph->optimize>transform
python3 ~/.keras2/lib/python3.5/site-packages/tensorflow/python/tools/freeze_graph.py --input_graph=graph_final.pb --input_checkpoint=reshape_final.ckpt --output_graph=frozen_graph.pb --output_node_names=regression_output/BiasAdd
python3 ~/.keras2/lib/python3.5/site-packages/tensorflow/python/tools/optimize_for_inference.py --input frozen_graph.pb --output opt_graph.pb --frozen_graph True --input_names input --output_names regression_output/BiasAdd
~/Qt/3rdLibs/tensorflow/bazel-bin/tensorflow/tools/graph_transforms/transform_graph --in_graph=opt_graph.pb --out_graph=fused_graph.pb --inputs=input --outputs=regression_output/BiasAdd --transforms="fold_constants fold_batch_norms fold_old_batch_norms sort_by_execution_order"
I get error message after I execute transform_graph:
"You must feed a value for placeholder tensor 'training' with dtype bool"
dnn module cannot load the model if is_training is True, I have to change it back to False and save the model again.
Edit :
I could avoid the error of transform_graph by changing placeholder to Variable(other remain the same)
From
training = tf.placeholder(tf.bool, name='training')
To
training = tf.Variable(False, name='training', trainable=False)
But this time when I load Load the model by opencv dnn,
std::string const model("/home/ramsus/Qt/blogCodes2/deep_homography/cnn/tensorflow/fused_graph.pb");
dnn::Net net = dnn::readNetFromTensorflow(model);
if(net.empty()){
std::cerr<<"Can't load network by using the mode file:"<<std::endl;
std::cerr<<model<<std::endl;
throw std::runtime_error("net is empty");
}
it throw error messages:
BatchNorm/moments/mean:Mean(conv2d/convolution)(BatchNorm/moments/mean/reduction_indices)
keep_dims:[ ] Tidx:[ ] T:0 OpenCV
Error: Unspecified error (Unknown
layer type Mean in op
BatchNorm/moments/mean) in
populateNet, file
/home/ramsus/Qt/3rdLibs/opencv/modules/dnn/src/tensorflow/tf_importer.cpp,
line 1077
/home/ramsus/Qt/3rdLibs/opencv/modules/dnn/src/tensorflow/tf_importer.cpp:1077:
error: (-2) Unknown layer type Mean in
op BatchNorm/moments/mean in function
populateNet