For now I am trying to predict only 1 or -1
the error is
OpenCV Error: Assertion failed (samples.cols == var_count && samples.type() == CV_32F) in predict
my code
public static Mat getMat(String path) {
Mat img = new Mat();
Mat convert_to_gray = Imgcodecs.imread(path, Imgcodecs.CV_LOAD_IMAGE_GRAYSCALE);
convert_to_gray.convertTo(img, CvType.CV_8U);
return img;
}
public static void test() {
System.out.println("Testing..");
Mat input = Imgcodecs.imread(new File(FILE_TEST).getAbsolutePath(),0);
Mat output = new Mat();
input.convertTo(output,CvType.CV_32SC1);
output = output.reshape(1, 1);
System.out.println(output);
System.out.println(clasificador.predict(output)); <-the error points here
}
public static void trains() {
System.out.println("Training...");
v_descriptors.copyTo(trainingData);
trainingData.convertTo(trainingData, CvType.CV_32F);
trainingLabels.copyTo(classes);
classes.convertTo(classes, CvType.CV_32S);
clasificador.setType(SVM.C_SVC);
clasificador.setKernel(SVM.LINEAR);
clasificador.setGamma(0.5);
clasificador.setNu(0.5);
clasificador.setC(1);
clasificador.setTermCriteria(S);
clasificador.train(trainingData, Ml.ROW_SAMPLE, classes);
System.out.println("Done Training");
}
public static void trainPositives() {
MatOfFloat descriptorsValues = new MatOfFloat();
int count = 0;
for (File file : new File(PATH_POSITIVE).listFiles()) {
count++;
Mat img = getMat(file.getAbsolutePath());
HOGDescriptor d = new HOGDescriptor(new Size(32, 16), new Size(8, 8), new Size(4, 4), new Size(4, 4), 9);
d.compute(img, descriptorsValues);
Mat labelsMat = new Mat(1, 1, CvType.CV_32SC1, new Scalar(1));
v_descriptors.push_back(descriptorsValues.reshape(1, 1));
trainingLabels.push_back(labelsMat);
}
System.out.println(v_descriptors);
System.out.println(trainingLabels);
}
public static void trainNegatives() {
int count = 0;
MatOfFloat descriptorsValues2 = new MatOfFloat();
for (File file : new File(PATH_NEGATIVE).listFiles()) {
count++;
Mat img = getMat(file.getAbsolutePath());
HOGDescriptor d = new HOGDescriptor(new Size(32, 16), new Size(8, 8), new Size(4, 4), new Size(4, 4), 9);
d.compute(img, descriptorsValues2);
Mat labelsMat = new Mat(1, 1, CvType.CV_32SC1, new Scalar(-1));
v_descriptors.push_back(descriptorsValues2.reshape(1, 1));
trainingLabels.push_back(labelsMat);
}
System.out.println(v_descriptors);
System.out.println(trainingLabels);
}