Simplest way to do an image registration
Hello, I'm literally losing my mind to find a solution to my problem: I've an Android App which shots two images on a small delta time. Now even if this delta is very small images are always a bit shifted (around 20/30px). My question is simple, I want just know how many pixel they shifted, nothing more. I think that OpenCV is the better solution since I'm not able to understand how SURF keypoint detection implementation works, but I getting many troubles to implement this in my Android App. Please could someone tell me the right way to do this? maybe even with a small piece of code (in pure Java or android native C)?
This is what I've now (looking around some tutorials) but I really don't know how move forward.
Thank you
//Bitmap to Mat
Utils.bitmapToMat(tmp2, mObjectMat);
Utils.bitmapToMat(tmp1, mSceneMat);
Mat img3 = mSceneMat.clone();
//Use the FeatureDetector interface in order to find interest points/keypoints in an image.
FeatureDetector fd = FeatureDetector.create(FeatureDetector.ORB);
fd.detect(mObjectMat, keypoints_object );
fd.detect(mSceneMat, keypoints_scene );
//DescriptorExtractor
//A descriptor extractor is an algorithm that generates a description of a keypoint that
// makes this keypoint recognizable by a matcher. Famous descriptors are SIFT, FREAK...
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.ORB);
extractor.compute(mObjectMat, keypoints_object, descriptors_object );
extractor.compute(mSceneMat, keypoints_scene, descriptors_scene );
//DescriptorMatcher
//Use a DescriptorMatcher for matching keypoint descriptors.
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
matcher.match( descriptors_object, descriptors_scene, matches);
//Calculate max and min distances between keypoints
matchesList = matches.toList();
for( int i = 0; i < descriptors_object.rows(); i++ )
{
Double dist = (double) matchesList.get(i).distance;
if( dist < minDistance ) minDistance = dist;
if( dist > maxDistance ) maxDistance = dist;
}
////Draw only good matches
for(int i = 0; i < descriptors_object.rows(); i++){
if(matchesList.get(i).distance < 3*minDistance){
good_matches.addLast(matchesList.get(i));
}
}
gm.fromList(good_matches);
matchesFound = good_matches.size();
//Draw the matches
Features2d.drawMatches(mObjectMat, keypoints_object, mSceneMat, keypoints_scene, gm, img3);
//Localize the object & find the keypoints from the good matches
List<KeyPoint> keypoints_objectList = keypoints_object.toList();
List<KeyPoint> keypoints_sceneList = keypoints_scene.toList();
for(int i = 0; i<good_matches.size(); i++){
objList.addLast(keypoints_objectList.get(good_matches.get(i).queryIdx).pt);
sceneList.addLast(keypoints_sceneList.get(good_matches.get(i).trainIdx).pt);
}
obj.fromList(objList);
scene.fromList(sceneList);
//Find homography between the scene and the object to recognize
Mat hg = Calib3d.findHomography(obj, scene, Calib3d.RANSAC, minDistance);
//Get the corners from the mObjectToDetectMat
Mat obj_corners = new Mat(4,1, CvType.CV_32FC2);
Mat scene_corners = new Mat(4,1,CvType.CV_32FC2);
obj_corners.put(0, 0, new double[] {0,0});
obj_corners.put(1, 0, new double[] {mObjectMat.cols(),0});
obj_corners.put(2, 0, new double[] {mObjectMat.cols(),mObjectMat.rows()});
obj_corners.put(3, 0, new double[] {0,mObjectMat.rows()});
Core.perspectiveTransform(obj_corners, scene_corners, hg);
Imgproc.line(img3, new Point(scene_corners.get(0,0)), new Point(scene_corners.get(1,0)), new Scalar(0, 255, 0),4);
Imgproc.line(img3, new Point(scene_corners.get(1,0)), new Point(scene_corners.get(2,0)), new Scalar(0, 255, 0),4);
Imgproc.line(img3 ...
Sir, all you need if Optical Flow :)