Opencv - Depth map from uncalibrated stereo system

asked 2016-03-23 03:27:56 -0500

Bilou563 gravatar image

updated 2016-03-23 12:33:47 -0500

I m trying to get a depth map from an uncalibrated method. I can obtain the fundamental matrix via different correspondent points from SIFT method and "cv2.findFundamentalMat". Then with "cv2.stereoRectifyUncalibrated" i can get the rectification matrix. Finally i can use "cv2.warpPerspective" to rectify and compute the disparity but this latter doesnt conduct to a good depth map...The values are very high so i m wondering if i have to use "warpPerspective" or i have to calculate rotation matrix from homography matrix got with "stereoRectifyUncalibrated"

A part of the code :

#Obtainment of the correspondent point with SIFT
sift = cv2.SIFT()

###find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(dst1,None)
kp2, des2 = sift.detectAndCompute(dst2,None)

###FLANN parameters
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)

flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des1,des2,k=2)

good = []
pts1 = []
pts2 = []

###ratio test as per Lowe's paper
for i,(m,n) in enumerate(matches):
    if m.distance < 0.8*n.distance:

pts1 = np.array(pts1)
pts2 = np.array(pts2)

#Computation of the fundamental matrix
F,mask= cv2.findFundamentalMat(pts1,pts2,cv2.FM_LMEDS)

# Obtainment of the rectification matrix and use of the warpPerspective to transform them...
pts1 = pts1[:,:][mask.ravel()==1]
pts2 = pts2[:,:][mask.ravel()==1]

pts1 = np.int32(pts1)
pts2 = np.int32(pts2)

p1fNew = pts1.reshape((pts1.shape[0] * 2, 1))
p2fNew = pts2.reshape((pts2.shape[0] * 2, 1))

retBool ,rectmat1, rectmat2 = cv2.stereoRectifyUncalibrated(p1fNew,p2fNew,F,(2048,2048))

dst11 = cv2.warpPerspective(dst1,rectmat1,(2048,2048))
dst22 = cv2.warpPerspective(dst2,rectmat2,(2048,2048))

#calculation of the disparity
stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET,ndisparities=16*10, SADWindowSize=9)
disp = stereo.compute(dst22.astype(uint8), dst11.astype(uint8)).astype(np.float32)

#plot depth by using disparity focal length C1[0,0] from stereo calibration and T[0] the distance between cameras


Here the rectified pictures with uncalibrated method (and warpPerspective) :

image description

Here the rectified pictures with calibrated method :

image description

I dont know how the difference is so important between the two kind of pictures...and for the calibrated method, it doesnt seem aligned...strange The disparity map of the uncalibrated method :

image description

And the depth map are calculated with : C1[0,0]*T[0]/(disp) with T from the "stereocalibrate" but the values are very high...

edit retag flag offensive close merge delete


Can we see the parameters C1 and T?

Giuseppe Persico gravatar imageGiuseppe Persico ( 2017-06-15 12:05:56 -0500 )edit