how to find matching image
Hello,
i want to extract similar image from vocabulary that was created in above code.this code run successfully creating two descriptors file.My question is that I don't understand that file "descriptr.yml" contains extracted features of query image or matched features of query image with vocabulary. Please help
my code is...
#include "stdafx.h"
#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <opencv2/nonfree/features2d.hpp>
using namespace cv;
using namespace std;
#define DICTIONARY_BUILD 0 // set DICTIONARY_BUILD 1 to do Step 1, otherwise it goes to step 2
int _tmain(int argc, _TCHAR* argv[])
{
int minHessian = 400; //Hessian Threshold
#if DICTIONARY_BUILD == 1
//Step 1 - Obtain the set of bags of features.
//to store the input file names
char filename[100]={};
//to store the current input image
Mat input;
//To store the keypoints that will be extracted by SURF
vector<KeyPoint> keypoints;
//To store the SURF descriptor of current image
Mat descriptor;
//To store all the descriptors that are extracted from all the images.
Mat featuresUnclustered;
//The SURF feature extractor and descriptor
SurfDescriptorExtractor detector(minHessian,4,2,false);
//I select 20 (1000/50) images from 1000 images to extract feature descriptors and build the vocabulary
for(int f=1;f<25;f++){
//create the file name of an image
sprintf(filename,"C:\\harshada\\OpenCV BoFSURF\\Release\\image\\%i.jpg",f);
//open the file
input = imread(filename, CV_LOAD_IMAGE_GRAYSCALE); //Load as grayscale
//Mat img =cv::imread("C:\\harshada\\OpenCV BoFSURF\\Release\\image\\22.jpg");
//cv::cvtColor(img,img,CV_BGR2GRAY);
if(input.empty())
{
cout << "Error: Image cannot be loaded !" << endl;
system("Pause");
return -1;
}
//detect feature points
detector.detect(input, keypoints);
//compute the descriptors for each keypoint
detector.compute(input, keypoints,descriptor);
//put the all feature descriptors in a single Mat object
featuresUnclustered.push_back(descriptor);
//print the percentage
printf("%i percent done\n",f/10);
}
//Construct BOWKMeansTrainer
//the number of bags
int dictionarySize=200;
//define Term Criteria
TermCriteria tc(CV_TERMCRIT_ITER,100,0.001);
//retries number
int retries=1;
//necessary flags
int flags=KMEANS_PP_CENTERS;
//Create the BoW (or BoF) trainer
BOWKMeansTrainer bowTrainer(dictionarySize,tc,retries,flags);
bowTrainer.add(featuresUnclustered);
if (featuresUnclustered.type() != CV_32F)
{
featuresUnclustered.convertTo(featuresUnclustered, CV_32F);
}
Mat vocabulary = bowTrainer.cluster();
//cluster the feature vectors
//Mat dictionary=bowTrainer.cluster(featuresUnclustered);
//store the vocabulary
FileStorage fs("C:\\harshada\\OpenCV BoFSURF\\Release\\image\\dictionary.yml", FileStorage::WRITE);
fs << "vocabulary" << vocabulary;
fs.release();
#else
//Step 2 - Obtain the BoF descriptor for given image/video frame.
//prepare BOW descriptor extractor from the dictionary
Mat dictionary;
FileStorage fs("C:\\harshada\\OpenCV BoFSURF\\Release\\image\\dictionary.yml", FileStorage::READ);
fs["vocabulary"] >> dictionary;
fs.release();
//create a nearest neighbor matcher
Ptr<DescriptorMatcher> matcher(new FlannBasedMatcher);
//create SURF feature point extracter
Ptr<FeatureDetector> detector(new SurfFeatureDetector(minHessian,4,2,false));
//create SURF descriptor extractor
Ptr<DescriptorExtractor> extractor(new SurfDescriptorExtractor(minHessian,4,2,false));
//create BoF (or BoW) descriptor extractor
BOWImgDescriptorExtractor bowDE(extractor,matcher);
//Set the dictionary with the vocabulary we created in the first step
bowDE.setVocabulary(dictionary);
//To store the image file name
char * filename = new char[100 ...