Trivial random forest with OpenCV doesn't work and isn't the same as sklearn
I'm trying to get the simplest example of random forest to work. The training data is 2 points {0,0} with a label 0 and {1,1} with a label 1. The sample to predict is {2,2}. OpenCV returns 0 rather than 1. Here is the OpenCV code in C++ (main.cpp
):
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/ml/ml.hpp>
using namespace std;
using namespace cv;
int main(int argc, char const *argv[]) {
cout << " hi \n";
float trainingData[2][2] = { {0.0, 0.0}, {1.0, 1.0}};
Mat training_data(2, 2, CV_32FC1, trainingData);
float trainingClass[2] = {0.0,1.0};
Mat training_class(2, 1, CV_32FC1, trainingClass);
CvRTrees rtree;
rtree.train(training_data, CV_ROW_SAMPLE, training_class);
float sampleData[2] = {2.0, 2.0};
Mat sample_data(2, 1, CV_32FC1, sampleData);
cout << rtree.predict(sample_data) << " <-- predict\n";
return 0;
}
cmake file:
cmake_minimum_required(VERSION 2.8)
project( main )
find_package( OpenCV REQUIRED )
add_executable( main main.cpp )
target_link_libraries( main ${OpenCV_LIBS} )
running:
> cmake .;make;./main
hi
0 <-- predict
To compare, here is a python's sklearn code (rfc.py
):
from sklearn.ensemble import RandomForestClassifier
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = RandomForestClassifier(n_estimators=10)
clf = clf.fit(X, Y)
print clf.predict([[2., 2.]])
running:
> python rfc.py
[1]
Update (1)
I tried different combination of placement of data and also changed the line
Mat sample_data(2, 1, CV_32FC1, sampleData);
to
Mat sample_data(2, 1, CV_32FC1, sampleData);
I still get just 0.