Linear Discriminant Analysis and Fisher Faces [closed]
"The Principal Component Analysis (PCA), which is the core of the Eigenfaces method, finds a linear combination of features that maximizes the total variance in data. While this is clearly a powerful way to represent data, it doesn’t consider any classes and so a lot of discriminative information may be lost when throwing components away." (Open CV)
What is mean by "CLASSES" here????
" Linear Discriminant Analysis maximizes the ratio of between-classes to within-classes scatter, instead of maximizing the overall scatter. The idea is simple: same classes should cluster tightly together, while different classes are as far away as possible from each other in the lower-dimensional representation.
in here also what is mean by CLASSES????
Can some one please explain this in image processing view thanx