Help run caffemodel
Hello!
I launch Caffe Models from EgoHandsDataset. I get an error:
OpenCV (3.4.2) C: \ projects \ opencv-python \ opencv \ modules \ dnn \ src \ dnn.cpp: 431: error: (-215: Assertion failed) inputs.size () == requiredOutputs in function 'cv :: dnn :: experimental_dnn_v5 :: DataLayer :: getMemoryShapes'
when I run this code in jupiter notebook
%run C:\Users\DNS\Desktop\hand_detector.py
import numpy as np
from PIL import Image
proto_path = r'C:\Users\DNS\Desktop\hand_classifier.prototxt'
caffe_path = r'C:\Users\DNS\Desktop\hand_classifier.caffemodel'
Detector = HandDetector(proto_path, caffe_path)
img = np.array(Image.open(r'C:\Users\DNS\Desktop\_LABELLED_SAMPLES\CARDS_COURTYARD_B_T\frame_0011.jpg'))
boxes = Detector(img)
On the Internet, it is advised to change the first word in prototxt, but I do not know how, the first layer looks like this:
name: "HandsCaffeNet"
layers {
name: "data"
type: WINDOW_DATA
top: "data"
top: "label"
window_data_param {
source: "text_file_accroding_to_window_data_layer_formatting.txt"
batch_size: 256
fg_threshold: 0.5
bg_threshold: 0.5
context_pad: 16
crop_mode: "warp"
}
transform_param {
crop_size: 227
mean_file: "/path_to_caffe/data/ilsvrc12/imagenet_mean.binaryproto"
mirror: false
}
include: { phase: TEST }
}
hand_detector.py:
import cv2
import numpy as np
from collections import namedtuple
# Type for face bounding box
Box = namedtuple('Box', 'x1 y1 x2 y2')
def adjust_gamma(image, gamma=1.5):
"""
Adjusting image gamma
Args:
image: image in np.uin8 format
gamma: gamma parameter
Returns:
image with adjusted gamma
"""
invGamma = 1.0 / gamma
table = np.fromfunction(
lambda i: ((i / 255.0) ** invGamma) * 255, (256,),
dtype=np.uint8
).astype(np.uint8)
return cv2.LUT(image, table)
class HandDetector:
def __init__(
self,
prototxt_path: str,
caffe_path: str,
conf: float = -1):
"""
FaceDetector class constructor
Args:
prototxt_path: path to prototxt file of Caffe model
caffe_path: path to caffe file of Caffe model
"""
self.net = cv2.dnn.readNetFromCaffe(prototxt_path, caffe_path)
self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_OPENCL)
self.confidence = conf
self.i = 0
self.transforms = [
lambda x: adjust_gamma(x),
lambda x: adjust_gamma(cv2.convertScaleAbs(x, alpha=1.8, beta=0))
]
def get_faces(self, _image: np.ndarray, conf: float = 0.5):
"""
Get faces bounding boxes list
Args:
_image: rgb image in np.uint8 format
conf: confidence threshold
Returns:
List of faces bounding boxes in Box format
"""
image = _image.copy()
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(
image,
1.0,
(300, 300), (104.0, 177.0, 123.0)
)
self.net.setInput(blob)
detections = self.net.forward()
finded = False
faces = []
for b in range(detections.shape[1]):
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > (
conf if self.confidence < 0 else self.confidence):
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype(np.int32)
# _w = endX - startX
# _h = endY - startY
#
# startX -= _w // 15
# endX += _w // 15
# startY -= _h // 15
# endY += _h // 15
startX, startY, endX, endY = [
0 if x < 0 else x
for x in (startX, startY, endX, endY)
]
startX, endX = [
x if x < image.shape[1] else image.shape[1] - 1
for x in (startX, endX)
]
startY, endY = [
y if y < image.shape[0 ...