To get Delta E for only the region of interest.

asked 2020-02-26 02:01:22 -0600

titli gravatar image

updated 2020-02-26 03:31:06 -0600

supra56 gravatar image

Code:

 # -*- coding: utf-8 -*-
"""
Created on Sun Feb  9 00:09:31 2020

@author: Shrouti
"""
import cv2
import numpy as np
from PIL import Image, ImageCms
from skimage import color

f = 500
rotXval = 90
rotYval = 90
rotZval = 90
distXval = 500
distYval = 500
distZval = 500

def onFchange(val):
    global f
    f = val

def onRotXChange(val):
    global rotXval
    rotXval = val

def onRotYChange(val):
    global rotYval
    rotYval = val

def onRotZChange(val):
    global rotZval
    rotZval = val

def onDistXChange(val):
    global distXval
    distXval = val

def onDistYChange(val):
    global distYval
    distYval = val

def onDistZChange(val):
    global distZval
    distZval = val

if __name__ == '__main__':

    # Read input image, and create output image
    src = cv2.imread("D:\SHROUTI\Testpictures\hand_gesture3.jpg")
    src = cv2.resize(src, (640, 480))
    dst = np.zeros_like(src)
    h, w = src.shape[:2]

    # Create user interface with trackbars that will allow to modify the parameters of the transformation
    wndname1 = "Source:"
    wndname2 = "WarpPerspective: "

    # Show original image
    cv2.imshow(wndname1, src)

    k = -1
    while k != 27:

        if f <= 0: f = 1
        rotX = (rotXval - 90) * np.pi / 180
        rotY = (rotYval - 90) * np.pi / 180
        rotZ = (rotZval - 90) * np.pi / 180
        distX = distXval - 500
        distY = distYval - 500
        distZ = distZval - 500

        # Camera intrinsic matrix
        K = np.array([[f, 0, w / 2, 0],
                      [0, f, h / 2, 0],
                      [0, 0, 1, 0]])

        # K inverse
        Kinv = np.zeros((4, 3))
        Kinv[:3, :3] = np.linalg.inv(K[:3, :3]) * f
        Kinv[-1, :] = [0, 0, 1]

        # Rotation matrices around the X,Y,Z axis
        RX = np.array([[1, 0, 0, 0],
                       [0, np.cos(rotX), -np.sin(rotX), 0],
                       [0, np.sin(rotX), np.cos(rotX), 0],
                       [0, 0, 0, 1]])

        RY = np.array([[np.cos(rotY), 0, np.sin(rotY), 0],
                       [0, 1, 0, 0],
                       [-np.sin(rotY), 0, np.cos(rotY), 0],
                       [0, 0, 0, 1]])

        RZ = np.array([[np.cos(rotZ), -np.sin(rotZ), 0, 0],
                       [np.sin(rotZ), np.cos(rotZ), 0, 0],
                       [0, 0, 1, 0],
                       [0, 0, 0, 1]])

        # Composed rotation matrix with (RX,RY,RZ)
        R = np.linalg.multi_dot([RX, RY, RZ])

        # Translation matrix
        T = np.array([[1, 0, 0, distX],
                      [0, 1, 0, distY],
                      [0, 0, 1, distZ],
                      [0, 0, 0, 1]])

        # Overall homography matrix
        H = np.linalg.multi_dot([K, R, T, Kinv])

        # Apply matrix transformation
        cv2.warpPerspective(src, H, (w, h), dst, cv2.INTER_NEAREST, cv2.BORDER_CONSTANT, 0)

        # Show the image
        cv2.imshow(wndname2, dst)

        k = cv2.waitKey(1)

        # convert image to gray scale
        gray = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)

        # blur the image
        blur = cv2.blur(gray, (3, 3))

        # binary thresholding of the image
        ret, thresh = cv2.threshold(blur, 200, 255, cv2.THRESH_BINARY)
        # ret, thresh = cv2.threshold(gray, 127, 255,0)

        # find contours
        # contours, hierarchy = cv2.findContours(thresh,2,1)
        contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        # cc
        cnt = sorted(contours, key=cv2.contourArea, reverse=True)

        mask = contours[0]
        # Convert to Lab colourspace

        Lab = color.rgb2lab(dst)
        L, A, B = cv2.split(Lab)
       # cv2.imshow("L_Channel", L)  # For L Channel
       # cv2.imshow("A_Channel", A)  # For A Channel (Here's what You need)
       # cv2.imshow("B_Channel ...
(more)
edit retag flag offensive close merge delete