I got wrong cv::cuda::Convoltion::convolution results.
I separated the color channels into BGR and convolved each color channels with the self-creation kernel in cv::cuda::Convolution
and got the undesired results.
Below is my code for the kernel creation.
Matrix createGk(float sig, int row, int col)
{
float r = 0.0;
float sum = 0.0;
int f_size, half; // h == kernel half size, f_size == kernel size
f_size = (int)ceil(sig * 6) + 1;
vector< vector<float> > gk;
half = f_size / 2;
for (int i = -half; i <= half; i++)
{
vector<float> row;
for (int j = -half; j <= half; j++)
{
float value = 0.0;
r = (i*i + j * j);
// gk[i + half][j + half] = exp((-(r * r)) / sig * sig);
value = exp((-(r)) / sig * sig);
//cout << value << endl;
row.push_back(value);
sum += value;
}
gk.push_back(row);
}
//For Normalization
for (int i = 0; i < row; i++)
{
for (int j = 0; j < col; j++)
{
gk[i][j] /= sum;
}
}
return gk;
}
And this is the code for convolution in blue channel part.
Matrix gk1, gk2, gk3;
///*
gk1 = createGk(15);
gk2 = createGk(80);
gk3 = createGk(250);
Mat gk1Mat((int)gk1.size(), (int)gk1[0].size(), CV_32F); // (int) ma pr yin possible data lost from type conversion so tr myo tway paw nay tl
for (int i = 0; i < gk1.size(); i++)
{
for (int j = 0; j < gk1[i].size(); j++)
{
gk1Mat.at<float>(i, j) = gk1[i][j];
}
}
Mat gk2Mat((int)gk2.size(), (int)gk2[0].size(), CV_32F); // (int) ma pr yin possible data lost from type conversion so tr myo tway paw nay tl
for (int i = 0; i < gk2.size(); i++)
{
for (int j = 0; j < gk2[i].size(); j++)
{
gk2Mat.at<float>(i, j) = gk2[i][j];
}
}
Mat gk3Mat((int)gk3.size(), (int)gk3[0].size(), CV_32F); // (int) ma pr yin possible data lost from type conversion so tr myo tway paw nay tl
for (int i = 0; i < gk3.size(); i++)
{
for (int j = 0; j < gk3[i].size(); j++)
{
gk3Mat.at<float>(i, j) = gk3[i][j];
}
}
cv::cuda::GpuMat d_gk1, d_gk2, d_gk3;
d_gk1.upload(gk1Mat);
d_gk2.upload(gk2Mat);
d_gk3.upload(gk3Mat);
Mat srcDouble;
src.convertTo(srcDouble, CV_32FC3); // I have change float here
vector<Mat> bgrCh;
split(srcDouble, bgrCh);
Mat h_bdouble, h_gdouble, h_rdouble;
h_bdouble = bgrCh[0];
h_gdouble = bgrCh[1];
h_rdouble = bgrCh[2];
//=======================================================================================
int top1, bottom1, left1, right1;
int top2, bottom2, left2, right2;
int top3, bottom3, left3, right3;
top1 = bottom1 = left1 = right1 = 45;
top2 = bottom2 = left2 = right2 = 240;
top3 = bottom3 = left3 = right3 = 750;
//paddedImage
Mat h_bdoublep1, h_bdoublep2, h_bdoublep3;
Mat h_gdoublep1, h_gdoublep2, h_gdoublep3;
Mat h_rdoublep1, h_rdoublep2, h_rdoublep3;
Scalar value(0, 0, 0);
copyMakeBorder(h_bdouble, h_bdoublep1, top1, bottom1, left1, right1, BORDER_CONSTANT, value);
copyMakeBorder(h_bdouble, h_bdoublep2, top2, bottom2, left2, right2, BORDER_CONSTANT, value);
copyMakeBorder(h_bdouble, h_bdoublep3, top3, bottom3, left3, right3, BORDER_CONSTANT, value);
cv::cuda::GpuMat d_bdoublep1,d_bdoublep2, d_bdoublep3;
d_bdoublep1.upload(h_bdoublep1);
d_bdoublep2.upload(h_bdoublep2);
d_bdoublep3.upload(h_bdoublep3);
cv::cuda::GpuMat d_ssrb1, d_ssrb2, d_ssrb3;
cv::Ptr<cv::cuda::Convolution> convolver1 = cuda::createConvolution(Size(91, 91)); // Size(91, 91)
cv::Ptr<cv::cuda::Convolution> convolver2 = cuda::createConvolution(Size(481, 481)); // Size(481, 481 ...