Error in yolo detection
error: OpenCV(3.4.5) /io/opencv/modules/dnn/src/layers/region_layer.cpp:97: error: (-215:Assertion failed) inputs[0][3] == (1 + coords + classes)*anchors in function 'getMemoryShapes'
import cv2 as cv
import sys
import numpy as np
import os.path
# Initialize the parameters
confThreshold = 0.5 #Confidence threshold
nmsThreshold = 0.4 #Non-maximum suppression threshold
inpWidth = 416 #Width of network's input image
inpHeight = 416 #Height of network's input image
PATH = '/home/ivan/YOLO/VIDEO.mp4'
# Load names of classes
classesFile ='/home/ivan/YOLO/coco.names'
classes = None
with open(classesFile, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
# Give the configuration and weight files for the model and load the network using them.
modelConfiguration = '/home/ivan/YOLO/yolov3.cfg'
modelWeights = '/home/ivan/YOLO/yolov3.weights'
net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
# Get the names of the output layers
def getOutputsNames(net):
# Get the names of all the layers in the network
layersNames = net.getLayerNames()
# Get the names of the output layers, i.e. the layers with unconnected outputs
return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# Draw the predicted bounding box
def drawPred(classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv.rectangle(frame, (left, top), (right, bottom), (0,255,0), 3)
# print(right,left,top,bottom)
# cv.circle(frame,(left+(right-left)//2,bottom+(top-bottom)//2), 3, (0,255,0), -1)
label = '%.2f' % conf
# Get the label for the class name and its confidence
if classes:
assert(classId < len(classes))
label = '%s:%s' % (classes[classId], label)
#Display the label at the top of the bounding box
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
cv.rectangle(frame, (left, top - round(1.5*labelSize[1])), (left + round(1.5*labelSize[0]), top + baseLine), (255, 255, 255), cv.FILLED)
cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0,0,0), 1)
def PerspectiveTransform(frame, left, top, right, bottom):
# Draw a bounding box.
cv.rectangle(frame, (left, top), (right, bottom), (0,255,0), 3)
# Points of the corners of the bounding box
pts1 = np.float32([[left,top],[right,top],[right,bottom],[left,top-bottom]])
# Points of the corners of the perspective transformation 600*600
pts2 = np.float32([[0,0],[600,0],[0,600],[600,600]])
# Compute the perspective transform matrix and then apply it
M = cv.getPerspectiveTransform(pts1,pts2)
dst = cv.warpPerspective(frame,M,(600,600))
# Return the warped image
return dst
# Remove the bounding boxes with low confidence using non-maxima suppression
def postprocess(frame, outs):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
# Scan through all the bounding boxes output from the network and keep only the
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
classIds = []
confidences = []
boxes = []
point = []
for out in outs:
for detection in out:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
center_x = int(detection[0 ...
that's a lot of code, most of it being irrelevant here. can you try to reduce it to a minimal, reproducable example ?
This error write on this row outs = net.forward(getOutputsNames(net))
Have you tried to run OpenCV's object detection sample: object_detection.py?