Strange results while using xphoto::LearningBaseWB
Hello! I'm trying to use xphoto::LearningBaseWB model from this tutorial link text and this works well for images from dataset. But if i try to use other images, i get something like this:
Code:
def stretch_to_8bit(arr, clip_percentile = 2.5):
temp = np.percentile(arr, 100 - clip_percentile)
print(temp)
arr = np.clip(arr * (255.0 / temp), 0, 255)
return arr.astype(np.uint8)
def build_model(model_path, input_bit_depth=8, bin_num=0):
range_thresh = 2 ** int(input_bit_depth) - 1
if bin_num == 0:
bin_num = 256 if range_thresh > 255 else 64
inst = cv.xphoto.createLearningBasedWB(model_path)
inst.setRangeMaxVal(range_thresh)
inst.setSaturationThreshold(0.98)
inst.setHistBinNum(bin_num)
return inst
def evaluate(image, model):
stretched = stretch_to_8bit(image)
new_im = model.balanceWhite(stretched)
estimated_illuminant = estimate_illuminant(image, new_im, 0.01)
result = stretch_to_8bit(new_im)
return result, estimated_illuminant
model = build_model(model_path, 8, 64)
image = cv.imread(im_path, cv.IMREAD_UNCHANGED)
result, eval = evaluate(image, model)
cv.imshow("src",image)
cv.imshow("dst",result)
What am I doing wrong?