How to train my data only once
This is my code , which i am using for train the dataset but whenever i run the code it again start vectorization and feature counting training etc , and it takes time every time whenever i start , i want it that it should train ones and not takes time again and again
char ch[30];
//--------Using SURF as feature extractor and FlannBased for assigning a new point to the nearest one in the dictionary
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased");
Ptr<DescriptorExtractor> extractor = new SurfDescriptorExtractor();
SurfFeatureDetector detector(500);
//---dictionary size=number of cluster's centroids
int dictionarySize = 1500;
TermCriteria tc(CV_TERMCRIT_ITER, 10, 0.001);
int retries = 1;
int flags = KMEANS_PP_CENTERS;
BOWKMeansTrainer bowTrainer(dictionarySize, tc, retries, flags);
BOWImgDescriptorExtractor bowDE(extractor, matcher);
void collectclasscentroids() {
IplImage *img;
int i,j;
for(j=1;j<=4;j++)
for(i=1;i<=60;i++){
sprintf( ch,"%s%d%s%d%s","train/",j," (",i,").jpg");
const char* imageName = ch;
img = cvLoadImage(imageName,0);
vector<KeyPoint> keypoint;
detector.detect(img, keypoint);
Mat features;
extractor->compute(img, keypoint, features);
bowTrainer.add(features);
}
return;
}
int _tmain(int argc, _TCHAR* argv[])
{
int i,j;
IplImage *img2;
cout<<"Vector quantization..."<<endl;
collectclasscentroids();
vector<Mat> descriptors = bowTrainer.getDescriptors();
int count=0;
for(vector<Mat>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
count += iter->rows;
}
cout<<"Clustering "<<count<<" features"<<endl;
//choosing cluster's centroids as dictionary's words
Mat dictionary = bowTrainer.cluster();
bowDE.setVocabulary(dictionary);
cout<<"extracting histograms in the form of BOW for each image "<<endl;
Mat labels(0, 1, CV_32FC1);
Mat trainingData(0, dictionarySize, CV_32FC1);
int k = 0;
vector<KeyPoint> keypoint1;
Mat bowDescriptor1;
//extracting histogram in the form of bow for each image
for(j = 1; j <= 4; j++)
for(i = 1; i <= 60; i++)
{
sprintf( ch,"%s%d%s%d%s","train/",j," (",i,").jpg");
const char* imageName = ch;
img2 = cvLoadImage(imageName, 0);
detector.detect(img2, keypoint1);
bowDE.compute(img2, keypoint1, bowDescriptor1);
trainingData.push_back(bowDescriptor1);
labels.push_back((float) j);
}
//Setting up SVM parameters
CvSVMParams params;
params.kernel_type = CvSVM::RBF;
params.svm_type = CvSVM::C_SVC;
params.gamma = 0.50625000000000009;
params.C = 312.50000000000000;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 0.000001);
CvSVM svm;
printf("%s\n", "Training SVM classifier");
bool res = svm.train(trainingData, labels, cv::Mat(), cv::Mat(), params);
cout<<"Processing evaluation data..."<<endl;
Mat groundTruth(0, 1, CV_32FC1);
Mat evalData(0, dictionarySize, CV_32FC1);
k = 0;
vector<KeyPoint> keypoint2;
Mat bowDescriptor2;
Mat results(0, 1, CV_32FC1);;
for(j = 1; j <= 4; j++)
for(i = 1; i <= 60; i++)
{
sprintf( ch, "%s%d%s%d%s", "eval/", j, " (",i,").jpg");
const char* imageName = ch;
img2 = cvLoadImage(imageName,0);
detector.detect(img2, keypoint2);
bowDE.compute(img2, keypoint2, bowDescriptor2);
evalData.push_back(bowDescriptor2);
groundTruth.push_back((float) j);
float response = svm.predict(bowDescriptor2);
results.push_back(response);
}
//calculate the number of unmatched classes
double errorRate = (double) countNonZero(groundTruth- results) / evalData.rows;
I just learn about the method to save the file of trained data like train.xml and than use it in prediction , but i am not clear about it and its use , Demo code will prefer ...
My data's dimension is 262144 by 3. I use 78642 train data and 78642 labels. I done training and prediction. I am not sure about, it is right or wrong. I want to display decision region. As per this code ,variable response is used for decision region. So how can i display it?