Ask Your Question
1

is my concept of infomax wrong or right?

asked 2017-12-06 10:42:49 -0600

AhmedSh3ban gravatar image

updated 2017-12-06 12:56:19 -0600

hi. sorry guys i would like to know if my concept of implementation ICA infomax is wrong or what because the result is blank image. here is my code:

/***

                            This is ICA infomax implementation 
                            equation :  X = AS  where X is the mixture matrix, A is mixing matrix, S is the source

                            SO ------> S = WX   where W is unmixing matrix. 
                            and since there no way that we can recover the excat source image but 
                            so we use U instead of S where U ~= S 
                            which gives us  U = WX

                            W = learning rate (YU) W + W

                            where Y = -tanh(U/2)
                            YU = I + Y (U)t

***/
#include <iostream>
#include <math.h>
#include <opencv2/opencv.hpp>
 using namespace std;
 using namespace cv;

 const char* depthToStr(int depth) {
  switch(depth){
    case CV_8U: return "unsigned char";
    case CV_8S: return "char";
    case CV_16U: return "unsigned short";
    case CV_16S: return "short";
    case CV_32S: return "int";
    case CV_32F: return "float";
    case CV_64F: return "double";
  }
  return "invalid type!";
}

 void ICA(Mat &w, Mat x, Mat &s)
 {

    // get the size of the unmixing matrix
    int Weightrows = x.rows;
    int Weightcols = x.rows;

    // learning rate
    float lnrate = 0.95;

    // U = source (s)
    Mat u;

    // y ---> is super guassian 
    Mat y;

    // YU
    Mat yu;
    // creating I (indentity matrix)
    Mat I = Mat::eye (x.rows, x.rows, CV_64F);

    // number of iterates
    int iteratesNumber = 0;



    // creating the unmixing matrix and set it to random variables
     w.create(Weightrows, Weightrows, CV_64F);
     randu(w, Scalar(-1), Scalar(1));

     x.convertTo(x, CV_64F);
     u.convertTo(u, CV_64F);
     cout << depthToStr(x.depth()) << endl << depthToStr(u.depth()) << endl<<depthToStr(w.depth()) <<endl;
    for(int iter = 0; iter < 10; iter++)
    {
        u = w * x;


        // set the super guassian (nonlinear)

        Mat tanh1, tanh2, tanh;
        exp (u, tanh1);
        exp (-1 * u , tanh2);

        tanh  = (tanh1 - tanh2) / (tanh1 + tanh2);
        y = -1 * tanh;

        yu = I + y * u.t(); 

        w = 0.95  * yu * w + w;

    }

    s = w * x;

 }
 int main()
 {
    Mat Image, weight, result;

    Image = imread("/home/pixar/Desktop/rmi.jpeg",0);
    imshow(" s", Image);


    ICA(weight, Image, result);
        cout << result <<endl;
        imshow(" ", result);
        waitKey(0);
    return 0;
 }
edit retag flag offensive close merge delete

Comments

can you put your code here, please ?

berak gravatar imageberak ( 2017-12-06 10:56:28 -0600 )edit

the output wasn't as i expected

AhmedSh3ban gravatar imageAhmedSh3ban ( 2017-12-06 12:09:55 -0600 )edit

1 answer

Sort by ยป oldest newest most voted
2

answered 2017-12-08 07:42:42 -0600

berak gravatar image

updated 2017-12-08 08:17:01 -0600

imho, you're already quite close !

the main thing missing here is: if you want to seperate N sources, you need N mixture images, flattened and stacked (similar to opencv's PCA usage) , not a single image. also the size of W is NxN, unrelated to the size of the images.

from there on, it's more a matter of careful normalization, whitening, and finding good initial random values (tanh easily "explodes", and produces NaN values, if the "energy" is too high)

image description

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;


void ICA(const Mat &mix, Mat &w, Mat &s)
{
    Mat x;
    mix.convertTo(x, CV_64F, 1.0/255);
    // whiten input
    Scalar m,d;
    meanStdDev(x,m,d);
    x -= m[0];
    x /= d[0];

    // get the size of the unmixing matrix
    int nmix = x.rows;

    // learning rate
    float lnrate = 0.95;

    Mat I = Mat::eye(nmix, nmix, CV_64F);
    w.create(nmix, nmix, CV_64F);
    randu(w, Scalar(-.01), Scalar(.01));

    for(int iter=0; iter<5000; iter++)
    {
        Mat u = w * x;

        Mat tanh1, tanh2, tan;
        exp (u, tanh1);
        exp (-1 * u , tanh2);
        // super gaussian
        Mat y = (tanh1 - tanh2) / (tanh1 + tanh2);
        // sub gaussian
        //Mat y = u - (tanh1 - tanh2) / (tanh1 + tanh2);

        Mat yu = (I - y * u.t());

        w = w + 0.95 * yu * w;

        if (iter % 100 == 0)
            cout << iter << " " << sum(yu)[0] << endl;
    }

    s = w * x;
}

int main()
{
    Mat i1 = imread("img/h1.png",0);
    Mat i2 = imread("img/h2.png",0);
    Mat i3 = imread("img/h3.png",0);

    Size siz(100,100);
    resize(i1,i1,siz);
    resize(i2,i2,siz);
    resize(i3,i3,siz);

    // to seperate 3 inputs, we need 3 mixes
    Mat m1 = i1*.4 + i2*.3+i3*.3;
    Mat m2 = i1*.3 + i2*.4+i3*.3;
    Mat m3 = i1*.3 + i2*.3+i3*.4;

    // visualization
    Mat m;
    hconcat(m1,m2,m);
    hconcat(m,m3,m);
    imshow("mix", m);
    Mat o;
    hconcat(i1,i2,o);
    hconcat(o,i3,o);
    imshow("orig", o);
    waitKey(10);

    // stack them to a single input Mat
    Mat mix;
    mix.push_back(m1.reshape(1,1));
    mix.push_back(m2.reshape(1,1));
    mix.push_back(m3.reshape(1,1));

    // perform infomax
    Mat w,result;
    ICA(mix, w, result);

    cout << "weights " << w << endl;

    // visualize output
    normalize(result,result,255,0,NORM_MINMAX,CV_8U);
    Mat r1 = result.row(0).reshape(1,100);
    Mat r2 = result.row(1).reshape(1,100);
    Mat r3 = result.row(2).reshape(1,100);
    Mat r;
    hconcat(r1, r2, r);
    hconcat(r, r3, r);
    imshow("res", r);

    waitKey(0);

    return 0;
}
edit flag offensive delete link more

Comments

thanks, but why do i get nan values if i set the size(200,200)? doesn't it work of high img size?

AhmedSh3ban gravatar imageAhmedSh3ban ( 2017-12-15 18:42:57 -0600 )edit
1

you need smaller initial values in the W matrix, then.

also, x^3 can be used as nonlinearity, alternative to the tanh, somewhat faster and more robust against that nan problem.

i made some attempt with fastICA, too, will update tomorrow !

berak gravatar imageberak ( 2017-12-15 21:47:46 -0600 )edit

"doesn't it work of high img size" -- think of it, the learned w matrix is just 3x3 in this example. (vs 200x200 images) it's amazing to me, that it can learn anything at all !

berak gravatar imageberak ( 2017-12-15 22:09:59 -0600 )edit

Question Tools

1 follower

Stats

Asked: 2017-12-06 10:42:49 -0600

Seen: 242 times

Last updated: Dec 08 '17