Ask Your Question
0

using EM of opencv, same training samples, but different results

asked 2013-07-29 03:06:19 -0500

peter307 gravatar image

updated 2013-07-29 22:35:13 -0500

Sorry for the mistake!! I have update this post? Can you try this and show me the results running on your machine??

Hi everyone,

I'm using the EM module of opencv(tried 2.4.2 and 2.4.3). I wants to try my samples(676*64) which is generated by SIFT+PCA by EM. but I have tried to use the same samples to train the EM to get the Gaussian mixture model. But the results are different.

here is a test code.

cv::Mat samples(50,2,CV_32FC1);
samples = samples.reshape(2,0);

int N=9, n1 = sqrt(9.0);
for(int i=0; i<N; ++i)
{
    cv::Mat subSamples = samples.rowRange(i*50/N, (i+1)*50/N );
    cv::Scalar mean((i%3 +1)*256/4, (i/3+1)*256/4);
    cv::Scalar var(30,30);
    cv::randn(subSamples, mean, var);
}
samples = samples.reshape(1,0);

samples.convertTo(samples, CV_64FC1);

std::cout<<"samples"<<std::endl;
for(int j=0; j<samples.rows; ++j){
    for(int i=0; i<samples.cols; ++i)
        std::cout<<samples.at<double>(j, i)<<" ";
    std::cout<<std::endl;
}
std::cout<<std::endl;

CvEM m_emModel1;
CvEMParams params1;
cv::Mat labels1;

params1.covs      = NULL;
params1.means     = NULL;
params1.weights   = NULL;
params1.probs     = NULL;
params1.nclusters = 10;
params1.cov_mat_type       = CvEM::COV_MAT_SPHERICAL;
params1.start_step         = CvEM::START_AUTO_STEP;
params1.term_crit.type     = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS;
m_emModel1.train(samples, cv::Mat(), params1, &labels1);

std::cout<<"means1"<<std::endl;
for(int j=0; j<10; ++j){
    for(int i=0; i<2; ++i)
        std::cout<<m_emModel1.getMeans().at<double>(j, i)<<" ";
    std::cout<<std::endl;
}

std::cout<<"weightes1"<<std::endl;
for(int j=0; j<10; ++j)
    std::cout<<m_emModel1.getWeights().at<double>(j)<<" ";
std::cout<<std::endl;

CvEM m_emModel;
CvEMParams params;
cv::Mat labels;

params.covs      = NULL;
params.means     = NULL;
params.weights   = NULL;
params.probs     = NULL;
params.nclusters = 10;
params.cov_mat_type       = CvEM::COV_MAT_SPHERICAL;
params.start_step         = CvEM::START_AUTO_STEP;
params.term_crit.type     = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS;
m_emModel.train(samples, cv::Mat(), params, &labels);

std::cout<<"means"<<std::endl;
for(int j=0; j<10; ++j){
    for(int i=0; i<2; ++i)
        std::cout<<m_emModel.getMeans().at<double>(j, i)<<" ";
    std::cout<<std::endl;
}

std::cout<<"weightes"<<std::endl;
for(int j=0; j<10; ++j)
    std::cout<<m_emModel.getWeights().at<double>(j)<<" ";
std::cout<<std::endl;

here is a result: image description

I really hope your replys, thanks your reading.

edit retag flag offensive close merge delete

Comments

2

You train your GMM with two different models and get two different results. So, what exactly is your question?

Guanta gravatar imageGuanta ( 2013-07-29 05:16:21 -0500 )edit
1

And your parameters are different (epsilon and start_step). By the way, not related, but I suggest you used the C++ interface (http://docs.opencv.org/modules/ml/doc/expectation_maximization.html#ml-expectation-maximization)

Mathieu Barnachon gravatar imageMathieu Barnachon ( 2013-07-29 05:57:07 -0500 )edit

hi Guanta and Mathieu, I have update the code. This time all the parameters are the same. But I still get different results?? any suggestion?

peter307 gravatar imagepeter307 ( 2013-07-29 22:39:17 -0500 )edit

1 answer

Sort by ยป oldest newest most voted
2

answered 2013-07-30 03:06:16 -0500

Guanta gravatar image

The reason why you get different results is hidden in one of the parameters you use: CvEM::START_AUTO_STEP . Thereby the k-means algorithm is used to estimate the initial parameters. Since k-means is initialized with random initial centers (KMEANS_PP_CENTERS) it results in different outcomes of parameters and thus different initial parameters for the EM-algorithm. If you use a large amount of data, I guess the effect will be reduced. However, if you don't want this effect at all, you have to initialize your EM-algorithm by hand and then use either CvEM::START_E_STEP or CvEM::START_M_STEP.

edit flag offensive delete link more

Comments

You right. But seems that the same result provides only START_M_STEP. START_E_STEP returns diff result as START_AUTO_STEP.

oktay gravatar imageoktay ( 2018-03-22 10:00:21 -0500 )edit
Login/Signup to Answer

Question Tools

1 follower

Stats

Asked: 2013-07-29 03:06:19 -0500

Seen: 594 times

Last updated: Jul 30 '13