Ask Your Question
1

Detecting 16 squares in a live video in Python

asked 2017-08-21 06:53:31 -0600

m3rt gravatar image

updated 2017-08-21 11:43:36 -0600

Hi; I am trying to detect all squares colors in a picture below -but in a live video-. By using simple blob detector, the program can get 16 squares most of the time and gets color values mostly correct, but it finds blobs other than this area for now. How can I prevent finding other blobs that are not needed?

1-Can it be done like this; When program sees 16 squares in a certain area, it would focus on that area and ignore other blobs.

I am kinda new to OpenCV and I am still learning stuff. Thanks in advance.

example image

edit retag flag offensive close merge delete

1 answer

Sort by » oldest newest most voted
1

answered 2017-08-21 07:49:07 -0600

the question seems finding Rubics cube asked before,

i did some modifications on my code of previous answer like below and get this result image...

image description

#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"

using namespace cv;
using namespace std;

// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
static double angle(Point pt1, Point pt2, Point pt0)
{
    double dx1 = pt1.x - pt0.x;
    double dy1 = pt1.y - pt0.y;
    double dx2 = pt2.x - pt0.x;
    double dy2 = pt2.y - pt0.y;
    return (dx1*dx2 + dy1*dy2) / sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

static void drawSquares(Mat& image, const vector<vector<Point> >& squares)
{
    Mat canvas(image.size(), CV_8SC3, Scalar(0, 0, 0));
    for (size_t i = 0; i < squares.size(); i++)
    {
        const Point* p = &squares[i][0];
        int n = (int)squares[i].size();

        Rect r = boundingRect(squares[i]);
        r.x = r.x + r.width / 4;
        r.y = r.y + r.height / 4;
        r.width = r.width / 2;
        r.height = r.height / 2;

        Mat roi = image(r);
        Scalar color = mean(roi);
        polylines(image, &p, &n, 1, true, color, 2);
        polylines(canvas, &p, &n, 1, true, color, 2);

        Point center(r.x + r.width / 2, r.y + r.height / 2);
        ellipse(image, center, Size(r.width / 2, r.height / 2), 0, 0, 360, color, 2, LINE_AA);
        ellipse(canvas, center, Size(r.width / 2, r.height / 2), 0, 0, 360, color, 2, LINE_AA);
    }
    imshow("canvas", canvas);
}

// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
static void findSquares(const Mat& image, vector<vector<Point> >& squares, bool inv = false)
{
    squares.clear();

    Mat gray, gray0;

    vector<vector<Point> > contours;

    cvtColor(image, gray0, COLOR_BGR2GRAY);
    GaussianBlur(gray0, gray0, Size(5, 5), 1.5, 1.5);
    Canny(gray0, gray, 0, 30, 3);
    dilate(gray, gray, Mat());
    imshow("canny", gray);
    // find contours and store them all as a list
    findContours(gray, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);

    vector<Point> approx;

    // test each contour
    for (size_t i = 0; i < contours.size(); i++)
    {
        // approximate contour with accuracy proportional
        // to the contour perimeter
        approxPolyDP(Mat(contours[i]), approx, 9, true);

        // square contours should have 4 vertices after approximation
        // relatively large area (to filter out noisy contours)
        // and be convex.
        // Note: absolute value of an area is used because
        // area may be positive or negative - in accordance with the
        // contour orientation
        if (approx.size() == 4 &&
            fabs(contourArea(Mat(approx))) > 5 &&
            isContourConvex(Mat(approx)))
        {
            double maxCosine = 0;

            for (int j = 2; j < 5; j++)
            {
                // find the maximum cosine of the angle between joint edges
                double cosine = fabs(angle(approx[j % 4], approx[j - 2], approx[j - 1]));
                maxCosine = MAX(maxCosine, cosine);
            }

            // if cosines of all angles are small
            // (all angles are ~90 degree) then write quandrange
            // vertices to resultant sequence
            if (maxCosine < 0.3)
                squares.push_back(approx);
        }
    }
}

int main(int argc, char** argv)
{
    Mat frame;
    vector<vector<Point> > squares;

        frame =imread(argv[1]);

        if (frame.empty())
        {
            return -1;
        }
        findSquares(frame, squares);
        drawSquares(frame, squares);
        imshow("result", frame);
        waitKey(0);

    return 0;
}
edit flag offensive delete link more

Comments

1

Forgot to mention that I'm using Python 3. Your answer can provide a map for the solution, teşekkürler ilginize.

m3rt gravatar imagem3rt ( 2017-08-21 11:43:07 -0600 )edit

Question Tools

2 followers

Stats

Asked: 2017-08-21 06:53:31 -0600

Seen: 1,328 times

Last updated: Aug 21 '17