How to Surf Descriptors as input for a SVM Classifier
I am using the Java implementation to build a SVM classifier to classify tree leaves. I get the following errors when I try to train the SVM:
OpenCV Error: Sizes of input arguments do not match () in cv::Mat::push_back, file ........\opencv\modules\core\src\matrix.cpp, line 650 CvException [org.opencv.core.CvException: cv::Exception: ........\opencv\modules\core\src\matrix.cpp:650: error: (-209) in function cv::Mat::push_back ] at org.opencv.core.Mat.n_push_back(Native Method) at org.opencv.core.Mat.push_back(Mat.java:1863) at mark.smart.csc7057.surfdetectorandsvm.SurfDetectorAndSVM.main(SurfDetectorAndSVM.java:126) OpenCV Error: Sizes of input arguments do not match () in cv::Mat::push_back, file ........\opencv\modules\core\src\matrix.cpp, line 650 CvException [org.opencv.core.CvException: cv::Exception: ........\opencv\modules\core\src\matrix.cpp:650: error: (-209) in function cv::Mat::push_back ] at org.opencv.core.Mat.n_push_back(Native Method) at org.opencv.core.Mat.push_back(Mat.java:1863) at mark.smart.csc7057.surfdetectorandsvm.SurfDetectorAndSVM.main(SurfDetectorAndSVM.java:167)
OpenCV Error: Bad argument (There is only a single class) in cvPreprocessCategoricalResponses, file ........\opencv\modules\ml\src\inner_functions.cpp, line 729 Exception in thread "main" CvException [org.opencv.core.CvException: cv::Exception: ........\opencv\modules\ml\src\inner_functions.cpp:729: error: (-5) There is only a single class in function cvPreprocessCategoricalResponses ] at org.opencv.ml.CvSVM.train_0(Native Method) at org.opencv.ml.CvSVM.train(CvSVM.java:270) at mark.smart.csc7057.surfdetectorandsvm.SurfDetectorAndSVM.main(SurfDetectorAndSVM.java:228)
I have read that a BOW trainer should be employed to cluster the surf descriptors, unfortunately this feature is currently not available with the java implementation. I would appreciate any guidance (with sample code if possible) to resolve this problem. The code I have used is as follows:
public static void main(String[] args) { System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
File leafImages = null;
String leafImageAbsPathAsStr = "";
File[] leafImageFilePaths;
File negImages = null;
String negImageAbsPathAsStr = "";
File[] negImageFilePaths;
final int leafImageWidth = 50; final int leafImageHeight = 50;
final int size = 200;
Mat leafGrayMat;
Mat leafBinMat = new Mat();
Mat negGrayMat; Mat negBinMat = new Mat();
Mat SVMtrainingData = new Mat(size, 1, CvType.CV_32FC1);
Mat labels = new Mat(size, 1, CvType.CV_32FC1);
List<float> trainingLabels = new ArrayList<float>();
MatOfKeyPoint keyPoints = new MatOfKeyPoint(); MatOfKeyPoint descriptors = new MatOfKeyPoint();
FeatureDetector featureDetector = FeatureDetector.create(FeatureDetector.SURF);
DescriptorExtractor descriptorExtractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
try { leafImages = new File("Images//acer_campestre_100_images");
leafImageFilePaths = leafImages.listFiles();
for(File path : leafImageFilePaths)
{
leafImageAbsPathAsStr = path.getAbsolutePath();
leafGrayMat = Highgui.imread(leafImageAbsPathAsStr, Highgui.CV_LOAD_IMAGE_GRAYSCALE);
Imgproc.adaptiveThreshold(leafGrayMat, leafBinMat, 255, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY, 55, 5);
featureDetector.detect(leafBinMat, keyPoints);
descriptorExtractor.compute(leafBinMat, keyPoints, descriptors);
descriptors.convertTo(descriptors, CvType.CV_32FC1);
SVMtrainingData.push_back(descriptors);
trainingLabels.add(1.0f);
}
} catch(Exception e) { e.printStackTrace(); } try { negImages = new File("Images//neg_images_100");
negImageFilePaths = negImages.listFiles();
for(File path : negImageFilePaths)
{
negImageAbsPathAsStr = path.getAbsolutePath();
negGrayMat = Highgui.imread(negImageAbsPathAsStr, Highgui.CV_LOAD_IMAGE_GRAYSCALE);
Imgproc.adaptiveThreshold(negGrayMat, negBinMat, 255, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY, 55, 5);
featureDetector.detect(leafBinMat, keyPoints);
descriptorExtractor.compute(leafBinMat, keyPoints, descriptors);
SVMtrainingData.push_back(descriptors);
trainingLabels.add(-1.0f);
}
} catch(Exception e) { e.printStackTrace(); } Float[] trainingLabelsArray = trainingLabels.toArray(new ...
opencv version ? (are you sure, you can use SURF from java at all ?)
how do you plan to handle the fact, that one image will give you 59 feature vectors, and another 24 ?