Triangulating points into world-space, and using in solvePnp.
I am triangulating points from a stereo system, then using these points in solvePnPRansac. When I reproject the points, they look good, but the tvec and rvec values returned are incorrect.
Having checked the concurrent sets of triangulated points in a 3d application, the frame - to - frame point clouds move, and the motion I expect on the camera seems to be on the point clouds instead. I have functions to update the projection matrices as I go, which should put the points in the same world position, but doesn't. I am doing something wrong. Any advice is much appreciated.
Every frame, I am:
projectedPoints = CvPnpRansac(keyPntsGood, objectPointsTri, cameraMatrix, distCoeffs, rvec, tvec);
upDatePMatrix(rvec, tvec, P1, P2);
std::vector<cv::Point3f> objectPointsTri = triangulateCv(keyPntsGoodL, keyPntsGoodR, P1, P2);
The functions above are:
cv::Mat computeProjMat(cv::Mat camMat, cv::Mat rotVec, cv::Mat transVec)
{
cv::Mat rotMat(3, 3, CV_64F), rotTransMat(3, 4, CV_64F); //Init.
//Convert rotation vector into rotation matrix
cv::Rodrigues(rotVec, rotMat);
//flip to camera pose
rotMat = rotMat.t(); // rotation of inverse
transVec = rotMat.t() * transVec; // translation of inverse
//Append translation vector to rotation matrix
cv::hconcat(rotMat, transVec, rotTransMat);
//Compute projection matrix by multiplying intrinsic parameter
//matrix (A) with 3 x 4 rotation and translation pose matrix (RT).
//Formula: Projection Matrix = A * RT;
return (camMat * rotTransMat);
}
void upDatePMatrix(cv::Mat rvec, cv::Mat tvec, cv::Mat &P1return, cv::Mat &P2return)
{
//extrinsics
float tx = 0.118; // STEREO BASELINE, to offset the right cam from the left.
float ty = 0;
float tz = 0;
cv::Mat tvec2 = cv::Mat(tvec.rows, tvec.cols, tvec.type());
tvec2.at<double>(0) = tvec.at<double>(0) + tx;
tvec2.at<double>(1) = tvec.at<double>(1);
tvec2.at<double>(2) = tvec.at<double>(2);
cv::Mat P1 = computeProjMat(cameraMatrix, rvec, tvec);
cv::Mat P2 = computeProjMat(cameraMatrix, rvec, tvec2);
P1.copyTo(P1return);
P2.copyTo(P2return);
}
std::vector<cv::Point2f> CvPnpRansac(std::vector<cv::KeyPoint> imagePoints, std::vector<cv::Point3f> objectPoints, cv::Mat cameraMatrix, cv::Mat distCoeffs, cv::Mat &rvecRturn, cv::Mat &tvecRTurn)
{
std::vector<cv::Point2f> points2d;
std::vector<cv::Point3f> points3d;
for (int i = 0; i < objectPoints.size(); i++)
{
cv::Point2f tmp;
tmp.x = imagePoints[i].pt.x;
tmp.y = imagePoints[i].pt.y;
points2d.push_back(tmp);
points3d.push_back(objectPoints[i]);
}
bool useExtrinsicGuess = false;
int iterationsCount = 200;
float reprojectionError = 1.0f;
double confidence = 0.9;
bool success = cv::solvePnPRansac(points3d, points2d, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, iterationsCount, reprojectionError, confidence, cv::noArray(), cv::SOLVEPNP_ITERATIVE);
std::vector<cv::Point2f> projectedPoints;
cv::projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs, projectedPoints);
rvec.copyTo(rvecRturn);
tvec.copyTo(tvecRTurn);
return projectedPoints;
}
std::vector<cv::Point3f> triangulateCv(std::vector<cv::KeyPoint> keyPntsLeft, std::vector<cv::KeyPoint> keyPntsRight, cv::Mat P1, cv::Mat P2)
{
std::vector<cv::Point3f> p3d;
std::vector<cv::Point2f> keysLeft;
std::vector<cv::KeyPoint> keyPntsTri;
std::vector<cv::Point2f> keysRight;
for (int i = 0; i < keyPntsLeft.size(); i++)
{
cv::Mat x3D;
cv::Point2f point1 = keyPntsLeft[i].pt;
cv::Point2f point2 = keyPntsRight[i].pt;
keysLeft.push_back(point1);
keysRight.push_back(point2 ...
Ok, your updatePMatrix is wrong (I think). Instead of changing the P matrix, keep what you calibrated. Instead you should just transform the points at the end of triangulateCv. Just use the rvec and tvec from solvePnP directly.
Sorry, life happened. I might have some time this weekend to do a little demo thing to test this in.
Thank you yet again. I have attempted this approach, and updated the question...
I don't think you need the Tran.inv(), and the function cv::transform will do it to all the points in the list at once.
So just * Tran? Am I right in using the homogenous 4*1 Mat?