1 | initial version |
for machine learning with opencv, you need a continuous MxN (float)Mat, where M(rows) is the number of feature vectors, and N(cols) is the feature count. also you need a Mx1 (int) Mat with the labels, one per feature row.
like this:
feature1 1
feature2 1
feature3 2
...
you can construct your training data manually (pseudocode):
Mat data, labels; // initially empty.
for each featurevec:
// this is the same format we need later for testing, see below !:
Mat row;
row.push_back(2.2f); // compactness
row.push_back(1.2f); // aspect
row.push_back(22.0f); // orient
data.push_back(row.reshape(1,1)); // flat row
labels.push_back(17);
Ptr<TrainData> td = ml::TrainData::create(data, ml::ROW_SAMPLE, labels);
but, if you already have a csv file, and it looks like this:
compactness, aspect_ratio, orientation, label
2.2, 1.4, 27, 1
3.2, 3.4, 7, 1
1.2, 2.4, 17, 2
2.6, 1.2, 2, 2
then it's a piece of cake:
// train:
Ptr<TrainData> td = ml::TrainData::loadFromCSV("my.csv",1);
Ptr<ml::KNearest> knn = ml::KNearest::create();
knn->train(td);
// later, test:
Mat test;
test.push_back(2.2f); // compactness
test.push_back(1.2f); // aspect
test.push_back(22.0f); // orient
// reshape to row-vec, and predict:
Mat res;
knn->findNearest(test.reshape(1,1), 3, res);
cerr << res << endl;
2 | No.2 Revision |
for machine learning with opencv, you need a continuous MxN (float)Mat, where M(rows) is the number of feature vectors, and N(cols) is the feature count. also you need a Mx1 (int) Mat with the labels, one per feature row.
like this:
feature1 1
feature2 1
feature3 2
...
you can construct your training data manually (pseudocode):
Mat data, labels; // initially empty.
for each featurevec:
// this is the same format we need later for testing, see below !:
Mat row;
row.push_back(2.2f); // compactness
row.push_back(1.2f); // aspect
row.push_back(22.0f); // orient
data.push_back(row.reshape(1,1)); // flat row
labels.push_back(17);
Ptr<TrainData> Ptr<ml::TrainData> td = ml::TrainData::create(data, ml::ROW_SAMPLE, labels);
but, if you already have a csv file, and it looks like this:
compactness, aspect_ratio, orientation, label
2.2, 1.4, 27, 1
3.2, 3.4, 7, 1
1.2, 2.4, 17, 2
2.6, 1.2, 2, 2
then it's a piece of cake:
// train:
Ptr<TrainData> Ptr<ml::TrainData> td = ml::TrainData::loadFromCSV("my.csv",1);
Ptr<ml::KNearest> knn = ml::KNearest::create();
knn->train(td);
// later, test:
Mat test;
test.push_back(2.2f); // compactness
test.push_back(1.2f); // aspect
test.push_back(22.0f); // orient
// reshape to row-vec, and predict:
Mat res;
knn->findNearest(test.reshape(1,1), 3, res);
cerr << res << endl;
3 | No.3 Revision |
for machine learning with opencv, you need a continuous MxN (float)Mat, where M(rows) is the number of feature vectors, and N(cols) is the feature count. also you need a Mx1 (int) Mat with the labels, one per feature row.
like this:
feature1 1
feature2 1
feature3 2
...
you can construct your training data manually (pseudocode):
Mat data, labels; // initially empty.
for each featurevec:
// this is the same format we need later for testing, see below !:
Mat row;
row.push_back(2.2f); // compactness
row.push_back(1.2f); // aspect
row.push_back(22.0f); // orient
data.push_back(row.reshape(1,1)); // flat row
labels.push_back(17);
Ptr<ml::TrainData> td = ml::TrainData::create(data, ml::ROW_SAMPLE, labels);
but, if you already have a csv file, and it looks like this:
compactness, aspect_ratio, orientation, label
2.2, 1.4, 27, 1
3.2, 3.4, 7, 1
1.2, 2.4, 17, 2
2.6, 1.2, 2, 2
then it's a piece of cake:
// train:
Ptr<ml::TrainData> td = ml::TrainData::loadFromCSV("my.csv",1);
ml::TrainData::loadFromCSV("my.csv",1); // 1 header row
Ptr<ml::KNearest> knn = ml::KNearest::create();
knn->train(td);
// later, test:
Mat test;
test.push_back(2.2f); // compactness
test.push_back(1.2f); // aspect
test.push_back(22.0f); // orient
// reshape to row-vec, and predict:
Mat res;
knn->findNearest(test.reshape(1,1), 3, res);
cerr << res << endl;