Ask Your Question

Revision history [back]

here is my code adopted from squares.cpp. it finds appropriate quad areas and crop them.

the result images

image description![image description] (/upfiles/143314691748202.jpg)image description

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>

using namespace cv;
using namespace std;

// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
static double angle( Point pt1, Point pt2, Point pt0 )
{
    double dx1 = pt1.x - pt0.x;
    double dy1 = pt1.y - pt0.y;
    double dx2 = pt2.x - pt0.x;
    double dy2 = pt2.y - pt0.y;
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}


// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
static void findSquares( const Mat& image, vector<vector<Point> >& squares , bool inv=false)
{
    squares.clear();

    Mat gray,gray0;

    vector<vector<Point> > contours;

    cvtColor(image,gray0,COLOR_BGR2GRAY);

    gray = gray0 >= 240;

    if (inv)
        gray = gray0 <= 10;

    // find contours and store them all as a list
    findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);

    vector<Point> approx;

    // test each contour
    for( size_t i = 0; i < contours.size(); i++ )
    {
        // approximate contour with accuracy proportional
        // to the contour perimeter
        approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);

        // square contours should have 4 vertices after approximation
        // relatively large area (to filter out noisy contours)
        // and be convex.
        // Note: absolute value of an area is used because
        // area may be positive or negative - in accordance with the
        // contour orientation
        if( approx.size() == 4 &&
                fabs(contourArea(Mat(approx))) > 500 &&
                isContourConvex(Mat(approx)) )
        {
            double maxCosine = 0;

            for( int j = 2; j < 5; j++ )
            {
                // find the maximum cosine of the angle between joint edges
                double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
                maxCosine = MAX(maxCosine, cosine);
            }

            // if cosines of all angles are small
            // (all angles are ~90 degree) then write quandrange
            // vertices to resultant sequence
            if( maxCosine < 0.3 )
                squares.push_back(approx);
        }
    }
}

int main( int argc, char** argv )
{
    vector<vector<Point> > squares;

    Mat image = imread(argv[1], 1);
    if( image.empty() )
    {
        cout <<  "Could not open or find the image" << endl ;
        return -1;
    }


    findSquares(image, squares);

    if (squares.empty())
        findSquares(image, squares,true);

    if (squares.empty())
    {
        cout <<  "Could not find any result" << endl ;
        return -1;
    }

    // shows all the squares in the image
    for( size_t i = 0; i < squares.size()-1; i++ )
    {
        Rect r=boundingRect( Mat(squares[i]));
        Mat s= image(r);

        stringstream temp_stream;
        temp_stream << argv[1] << " - "<< i << ".jpg";


        imwrite(temp_stream.str(),s);
        imshow(temp_stream.str(),s);
    }
    waitKey(0);
    return 0;
}

here is my code adopted from squares.cpp. it finds appropriate quad areas and crop them.

the result images

image description![image description] (/upfiles/143314691748202.jpg)image descriptionimage descriptionimage descriptionimage description

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>

using namespace cv;
using namespace std;

// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
static double angle( Point pt1, Point pt2, Point pt0 )
{
    double dx1 = pt1.x - pt0.x;
    double dy1 = pt1.y - pt0.y;
    double dx2 = pt2.x - pt0.x;
    double dy2 = pt2.y - pt0.y;
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}


// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
static void findSquares( const Mat& image, vector<vector<Point> >& squares , bool inv=false)
{
    squares.clear();

    Mat gray,gray0;

    vector<vector<Point> > contours;

    cvtColor(image,gray0,COLOR_BGR2GRAY);

    gray = gray0 >= 240;

    if (inv)
        gray = gray0 <= 10;

    // find contours and store them all as a list
    findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);

    vector<Point> approx;

    // test each contour
    for( size_t i = 0; i < contours.size(); i++ )
    {
        // approximate contour with accuracy proportional
        // to the contour perimeter
        approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);

        // square contours should have 4 vertices after approximation
        // relatively large area (to filter out noisy contours)
        // and be convex.
        // Note: absolute value of an area is used because
        // area may be positive or negative - in accordance with the
        // contour orientation
        if( approx.size() == 4 &&
                fabs(contourArea(Mat(approx))) > 500 &&
                isContourConvex(Mat(approx)) )
        {
            double maxCosine = 0;

            for( int j = 2; j < 5; j++ )
            {
                // find the maximum cosine of the angle between joint edges
                double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
                maxCosine = MAX(maxCosine, cosine);
            }

            // if cosines of all angles are small
            // (all angles are ~90 degree) then write quandrange
            // vertices to resultant sequence
            if( maxCosine < 0.3 )
                squares.push_back(approx);
        }
    }
}

int main( int argc, char** argv )
{
    vector<vector<Point> > squares;

    Mat image = imread(argv[1], 1);
    if( image.empty() )
    {
        cout <<  "Could not open or find the image" << endl ;
        return -1;
    }


    findSquares(image, squares);

    if (squares.empty())
        findSquares(image, squares,true);

    if (squares.empty())
    {
        cout <<  "Could not find any result" << endl ;
        return -1;
    }

    // shows all the squares in the image
    for( size_t i = 0; i < squares.size()-1; i++ )
    {
        Rect r=boundingRect( Mat(squares[i]));
        Mat s= image(r);

        stringstream temp_stream;
        temp_stream << argv[1] << " - "<< i << ".jpg";


        imwrite(temp_stream.str(),s);
        imshow(temp_stream.str(),s);
    }
    waitKey(0);
    return 0;
}