1 | initial version |
What about this:
import numpy
import cv2
points = np.array([[1.0, 2.1], [1, -1], [2, 3], [2, 1]], dtype=np.float32)
labels = np.array([0, 1, 0, 1], dtype=np.float32)
# Train the SVM:
model = cv2.SVM(points, labels)
# Store it by using OpenCV functions:
model.save("/path/to/model.xml")
# Now create a new SVM & load the model:
model2 = cv2.SVM()
model2.load("/path/to/model.xml")
# Predict with model2:
model2.predict(np.array([[1.0, 2.1]], dtype=np.float32))
2 | No.2 Revision |
What about this:
import numpy
numpy as np
import cv2
points = np.array([[1.0, 2.1], [1, -1], [2, 3], [2, 1]], dtype=np.float32)
labels = np.array([0, 1, 0, 1], dtype=np.float32)
# Train the SVM:
model = cv2.SVM(points, labels)
# Store it by using OpenCV functions:
model.save("/path/to/model.xml")
# Now create a new SVM & load the model:
model2 = cv2.SVM()
model2.load("/path/to/model.xml")
# Predict with model2:
model2.predict(np.array([[1.0, 2.1]], dtype=np.float32))