1 | initial version |
I quickly tested it with 2 test images. The 2nd smaller one showed up within the bigger one.
cv::Size t = smallImage.size();
Mat roi(img_matches,cv::Rect(0,0, t.width, t.height) );
smallImage.copyTo(roi);
2 | No.2 Revision |
I quickly tested it with 2 test images. The 2nd smaller one showed up within the bigger one.
cv::Size t = smallImage.size();
Mat roi(img_matches,cv::Rect(0,0, t.width, t.height) );
smallImage.copyTo(roi);
Edit:
#include "highgui/highgui.hpp"
#include "nonfree/nonfree.hpp"
#include "features2d/features2d.hpp"
#include "calib3d/calib3d.hpp"
#include "imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
void readme();
/** @function main */
int main( int argc, char** argv )
{
if( argc != 4 )
{ readme(); return -1; }
cv::initModule_nonfree();
Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_replacement = imread(argv[3], CV_LOAD_IMAGE_GRAYSCALE);
if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 300;
SurfFeatureDetector detector( minHessian, 4, 2, true, false );
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect( img_object, keypoints_object );
detector.detect( img_scene, keypoints_scene );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
Mat img_matches;
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( unsigned int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
std::vector<Point2f> scene_corners(4);
perspectiveTransform( obj_corners, scene_corners, H);
Mat help;
cv::resize(img_replacement, help, img_object.size());
warpPerspective(help, img_replacement, H, help.size());
Mat mask = cv::Mat::ones(img_object.size(), CV_8U);
Mat mask2;
warpPerspective(mask, mask2, H, mask.size());
img_replacement.copyTo(img_scene, mask2);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
/* line( img_scene, scene_corners[0] , scene_corners[1], Scalar(0, 255, 0), 4 );
line( img_scene, scene_corners[1] , scene_corners[2], Scalar( 0, 255, 0), 4 );
line( img_scene, scene_corners[2] , scene_corners[3], Scalar( 0, 255, 0), 4 );
line( img_scene, scene_corners[3] , scene_corners[0], Scalar( 0, 255, 0), 4 );
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );*/
//-- Show detected matches
imshow( "Good Matches & Object detection", img_scene );
//imshow(" Derp", img_replacement);
waitKey(0);
return 0;
}
/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
3 | No.3 Revision |
I quickly tested it with 2 test images. The 2nd smaller one showed up within the bigger one.
cv::Size t = smallImage.size();
Mat roi(img_matches,cv::Rect(0,0, t.width, t.height) );
smallImage.copyTo(roi);
Edit:
#include "highgui/highgui.hpp"
#include "nonfree/nonfree.hpp"
#include "features2d/features2d.hpp"
#include "calib3d/calib3d.hpp"
#include "imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
void readme();
/** @function main */
int main( int argc, char** argv )
{
if( argc != 4 )
{ readme(); return -1; }
cv::initModule_nonfree();
Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_replacement = imread(argv[3], CV_LOAD_IMAGE_GRAYSCALE);
if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 300;
SurfFeatureDetector detector( minHessian, 4, 2, true, false );
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect( img_object, keypoints_object );
detector.detect( img_scene, keypoints_scene );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
Mat img_matches;
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( unsigned int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
std::vector<Point2f> scene_corners(4);
perspectiveTransform( obj_corners, scene_corners, H);
Mat help;
cv::resize(img_replacement, help, img_object.size());
warpPerspective(help, img_replacement, H, help.size());
img_scene.size());
Mat mask = cv::Mat::ones(img_object.size(), CV_8U);
Mat mask2;
warpPerspective(mask, mask2, H, mask.size());
img_replacement.copyTo(img_scene, mask2);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
/* line( img_scene, scene_corners[0] , scene_corners[1], Scalar(0, 255, 0), 4 );
line( img_scene, scene_corners[1] , scene_corners[2], Scalar( 0, 255, 0), 4 );
line( img_scene, scene_corners[2] , scene_corners[3], Scalar( 0, 255, 0), 4 );
line( img_scene, scene_corners[3] , scene_corners[0], Scalar( 0, 255, 0), 4 );
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );*/
//-- Show detected matches
imshow( "Good Matches & Object detection", img_scene );
//imshow(" Derp", img_replacement);
waitKey(0);
return 0;
}
/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
4 | No.4 Revision |
I quickly tested it with 2 test images. The 2nd smaller one showed up within the bigger one.
cv::Size t = smallImage.size();
Mat roi(img_matches,cv::Rect(0,0, t.width, t.height) );
smallImage.copyTo(roi);
Edit:
#include "highgui/highgui.hpp"
#include "nonfree/nonfree.hpp"
#include "features2d/features2d.hpp"
#include "calib3d/calib3d.hpp"
#include "imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
void readme();
/** @function main */
int main( int argc, char** argv )
{
if( argc != 4 )
{ readme(); return -1; }
cv::initModule_nonfree();
Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_replacement = imread(argv[3], CV_LOAD_IMAGE_GRAYSCALE);
if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 300;
SurfFeatureDetector detector( minHessian, 4, 2, true, false );
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect( img_object, keypoints_object );
detector.detect( img_scene, keypoints_scene );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
Mat img_matches;
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( unsigned int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
std::vector<Point2f> scene_corners(4);
perspectiveTransform( obj_corners, scene_corners, H);
Mat help;
cv::resize(img_replacement, help, img_object.size());
warpPerspective(help, img_replacement, H, img_scene.size());
Mat mask = cv::Mat::ones(img_object.size(), CV_8U);
Mat mask2;
warpPerspective(mask, mask2, H, mask.size());
img_scene.size());
img_replacement.copyTo(img_scene, mask2);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
/* line( img_scene, scene_corners[0] , scene_corners[1], Scalar(0, 255, 0), 4 );
line( img_scene, scene_corners[1] , scene_corners[2], Scalar( 0, 255, 0), 4 );
line( img_scene, scene_corners[2] , scene_corners[3], Scalar( 0, 255, 0), 4 );
line( img_scene, scene_corners[3] , scene_corners[0], Scalar( 0, 255, 0), 4 );
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );*/
//-- Show detected matches
imshow( "Good Matches & Object detection", img_scene );
//imshow(" Derp", img_replacement);
waitKey(0);
return 0;
}
/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }