1 | initial version |
a better way to test things might be:
import cv2
import numpy as np
def test(img, N, S):
t0 = cv2.getTickCount()
for i in range(N):
blur= cv2.pyrMeanShiftFiltering(img,21,49)
gray_image= cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY)
t1 = cv2.getTickCount()
print ("%s:\t%d iterations took %f seconds." % (S, N, (t1-t0)/cv2.getTickFrequency()))
#cv2.ocl.setUseOpenCL(False)
img = cv2.imread("Red.jpg")
print("image size: ", img.shape)
N = 100
test(img, N, "Mat")
uim = cv2.UMat(img)
test(uim, N, "UMat")
in other words:
2 | No.2 Revision |
a better way to test things might be:
import cv2
import numpy as np
def test(img, N, S):
t0 = cv2.getTickCount()
for i in range(N):
blur= cv2.pyrMeanShiftFiltering(img,21,49)
gray_image= cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY)
t1 = cv2.getTickCount()
print ("%s:\t%d iterations took %f seconds." % (S, N, (t1-t0)/cv2.getTickFrequency()))
#cv2.ocl.setUseOpenCL(False)
img = cv2.imread("Red.jpg")
print("image size: ", img.shape)
N = 100
test(img, N, "Mat")
uim = cv2.UMat(img)
test(uim, test(cv2.UMat(img), N, "UMat")
in other words: