1 | initial version |
youo can specify the desired output layer in the net's forward() function, like:
output = net.forward("fc7")
2 | No.2 Revision |
youo you can specify the desired output layer in the net's forward() function, like:
output = net.forward("fc7")
3 | No.3 Revision |
using cv2.Dnn, you can specify the desired output layer in the net's forward() function, like:
output = net.forward("fc7")
4 | No.4 Revision |
using cv2.Dnn, cv2.dnn, you can specify the desired output layer in the net's forward() function, like:
# assuming, that an fc layer at the end denotes a "classification" model
net = cv.dnn.readNet(caffemodel, prototxt)
img = ...
blob = cv.dnn.blobFromImage(img, scale, (width, height), mean, isrgb, cropFromCenter)
net.setInput(blob)
output = net.forward("fc7")
for a more detailled (python) sample, please have a look here !
5 | No.5 Revision |
using cv2.dnn, you can specify the desired output layer in the net's forward() function, like:
# assuming, that an fc layer at the end denotes a "classification" model
net = cv.dnn.readNet(caffemodel, prototxt)
img = ...
blob = cv.dnn.blobFromImage(img, scale, (width, height), mean, isrgb, cropFromCenter)
net.setInput(blob)
output = net.forward("fc7")
net.forward("fc7") # <--your final layer here !
print np.argmax(output), np.max(output)
for a more detailled (python) sample, please have a look here !
6 | No.6 Revision |
using cv2.dnn, you can specify the desired output layer in the net's forward() function, like:
# assuming, that an fc layer at the end denotes a "classification" model
net = cv.dnn.readNet(caffemodel, prototxt)
img = ...
blob = cv.dnn.blobFromImage(img, scale, (width, height), (227, 227), mean, isrgb, cropFromCenter)
net.setInput(blob)
output = net.forward("fc7") # <--your final layer here !
print np.argmax(output), np.max(output)
for a more detailled (python) sample, please have a look here !