1 | initial version |
recognizer = cv2.face.LBPHFaceRecognizer_create();
path="dataset"
def getImagesWithID(path):
imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
faces=[]
IDs=[]
for imagePath in imagePaths:
faceImg=Image.open(imagePath).convert('L');
faceNp=np.array(faceImg,'uint8')
ID=int(os.path.split(imagePath)[-1].split('.')[1])
faces.append(faceNp)
IDs.append(ID)
cv2.imshow("training",faceNp)
cv2.waitKey(10)
return np.array(IDs), faces
Ids, faces = getImagesWithID(path)
recognizer.train(faces, Ids)
recognizer.save('recognizer/trainningData.yml')
hope this will help
2 | No.2 Revision |
recognizer = cv2.face.LBPHFaceRecognizer_create();
path="dataset"
def getImagesWithID(path):
imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
faces=[]
IDs=[]
for imagePath in imagePaths:
faceImg=Image.open(imagePath).convert('L');
faceNp=np.array(faceImg,'uint8')
ID=int(os.path.split(imagePath)[-1].split('.')[1])
faces.append(faceNp)
IDs.append(ID)
cv2.imshow("training",faceNp)
cv2.waitKey(10)
return np.array(IDs), hope this will help
3 | No.3 Revision |
recognizer = cv2.face.LBPHFaceRecognizer_create();
path="dataset"hope this will help:
recognizer = cv2.face.LBPHFaceRecognizer_create();
path="dataset"
def getImagesWithID(path):
imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
faces=[]
IDs=[]
for imagePath in imagePaths:
faceImg=Image.open(imagePath).convert('L');
faceNp=np.array(faceImg,'uint8')
ID=int(os.path.split(imagePath)[-1].split('.')[1])
faces.append(faceNp)
IDs.append(ID)
cv2.imshow("training",faceNp)
cv2.waitKey(10)
return np.array(IDs), faces
Ids, faces = getImagesWithID(path)
recognizer.train(faces, Ids)
recognizer.save('recognizer/trainningData.yml')
hope this will help