1 | initial version |
There is no problem with your code. My result is :
100
200
300
400
500
600
700
800
900
Success rate: 100%
Appuyez sur une touche pour continuer...
2 | No.2 Revision |
There is no problem with your code. code using 0.1. My result is :
100
200
300
400
500
600
700
800
900
Success rate: 100%
Appuyez sur une touche pour continuer...
Now using 1.0 I have got same exception but you should use UPDATE_WEIGHT careffully. When you train first time, output are normalised between -0.98 and 0.98 : flag ANN_MLP::NO_OUTPUT_SCALE is not used . All new values in training data x must verified : -0.98<x<0.98 if="" you="" don't="" use="" ann_mlp::no_output_scale="" in="" next="" call="" then="" data="" are="" checked="" and="" assertion="" is="" thrown.="" use="" ann_mlp::no_output_scale="" no="" assertion="" is="" thrown="" and="" results="" is="" :<="" p="">
100 200 300 400 500 600 700 800 900 Success rate: 68.25%
3 | No.3 Revision |
There is no problem with your code using 0.1. My result is :
100
200
300
400
500
600
700
800
900
Success rate: 100%
Appuyez sur une touche pour continuer...
Now using 1.0 I have got same exception but you should use UPDATE_WEIGHT careffully. When you train first time, output are normalised between -0.98 and 0.98 : flag ANN_MLP::NO_OUTPUT_SCALE is not used . All new values in training data x must verified : -0.98<x<0.98 if="" you="" don't="" use="" ann_mlp::no_output_scale="" in="" next="" call="" then="" data="" are="" checked="" and="" assertion="" is="" thrown.="" use="" ann_mlp::no_output_scale="" no="" assertion="" is="" thrown="" and="" results="" is="" :<="" p="">
-0.98 < x < 0.98 if you don't use ANN_MLP::NO_OUTPUT_SCALE in next call then data are checked and assertion is thrown. Use ANN_MLP::NO_OUTPUT_SCALE no assertion is thrown and results is :
100
200
300
400
500
600
700
800
900
Success rate: