1 | initial version |
Now I'm using CascadeClassifier, and yeah! I can detect human now!
This is my full code:
#include"stdafx.h"
#include<vector>
#include<iostream>
#include<opencv2/opencv.hpp>
#include<opencv2/core/core.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/objdetect/objdetect.hpp>
int main(int argc, char *argv[])
{
cv::Mat frame;
cv::Mat fg;
cv::Mat blurred;
cv::Mat thresholded;
cv::Mat gray;
cv::Mat blob;
cv::Mat bgmodel;
cv::namedWindow("Frame");
cv::namedWindow("Background Model");
cv::namedWindow("Blob");
cv::VideoCapture cap("campus3.avi");
cv::BackgroundSubtractorMOG2 bgs;
bgs.nmixtures = 3;
bgs.history = 1000;
bgs.varThresholdGen = 15;
bgs.bShadowDetection = true;
bgs.nShadowDetection = 0;
bgs.fTau = 0.5;
std::vector<std::vector<cv::Point>> contours;
cv::CascadeClassifier body;
assert(human.load("hogcascade_pedestrians.xml"));
for(;;)
{
cap >> frame;
cv::GaussianBlur(frame,blurred,cv::Size(3,3),0,0,cv::BORDER_DEFAULT);
bgs.operator()(blurred,fg);
bgs.getBackgroundImage(bgmodel);
cv::threshold(fg,thresholded,70.0f,255,CV_THRESH_BINARY);
cv::Mat elementCLOSE(5,5,CV_8U,cv::Scalar(255,255,255));
cv::morphologyEx(thresholded,thresholded,cv::MORPH_CLOSE,elementCLOSE);
cv::findContours(thresholded,contours,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE);
cv::cvtColor(thresholded,blob,CV_GRAY2RGB);
cv::drawContours(blob,contours,-1,cv::Scalar(1),CV_FILLED,8);
cv::cvtColor(frame,gray,CV_RGB2GRAY);
cv::equalizeHist(gray, gray);
int cmin = 50;
int cmax = 1000;
std::vector<cv::Rect> rects;
std::vector<std::vector<cv::Point>>::iterator itc=contours.begin();
while (itc!=contours.end()) {
if (itc->size() > cmin && itc->size() < cmax){
human.detectMultiScale(gray, rects);
for (unsigned int i=0;i<rects.size();i++) {
cv::rectangle(frame, cv::Point(rects[i].x, rects[i].y),
cv::Point(rects[i].x+rects[i].width, rects[i].y+rects[i].height),
cv::Scalar(0, 255, 0));
}
++itc;
}else{++itc;}
}
cv::imshow("Frame",frame);
cv::imshow("Background Model",bgmodel);
cv::imshow("Blob",blob);
if(cv::waitKey(30) >= 0) break;
}
return 0;
}
Now I'm using CascadeClassifier, and yeah! I can detect human now!
This is my full code:
#include"stdafx.h"
#include<vector>
#include<iostream>
#include<opencv2/opencv.hpp>
#include<opencv2/core/core.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/objdetect/objdetect.hpp>
int main(int argc, char *argv[])
{
cv::Mat frame;
cv::Mat fg;
cv::Mat blurred;
cv::Mat thresholded;
cv::Mat gray;
cv::Mat blob;
cv::Mat bgmodel;
cv::namedWindow("Frame");
cv::namedWindow("Background Model");
cv::namedWindow("Blob");
cv::VideoCapture cap("campus3.avi");
cv::BackgroundSubtractorMOG2 bgs;
bgs.nmixtures = 3;
bgs.history = 1000;
bgs.varThresholdGen = 15;
bgs.bShadowDetection = true;
bgs.nShadowDetection = 0;
bgs.fTau = 0.5;
std::vector<std::vector<cv::Point>> contours;
cv::CascadeClassifier body;
assert(human.load("hogcascade_pedestrians.xml"));
for(;;)
{
cap >> frame;
cv::GaussianBlur(frame,blurred,cv::Size(3,3),0,0,cv::BORDER_DEFAULT);
bgs.operator()(blurred,fg);
bgs.getBackgroundImage(bgmodel);
cv::threshold(fg,thresholded,70.0f,255,CV_THRESH_BINARY);
cv::Mat elementCLOSE(5,5,CV_8U,cv::Scalar(255,255,255));
cv::morphologyEx(thresholded,thresholded,cv::MORPH_CLOSE,elementCLOSE);
cv::findContours(thresholded,contours,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE);
cv::cvtColor(thresholded,blob,CV_GRAY2RGB);
cv::drawContours(blob,contours,-1,cv::Scalar(1),CV_FILLED,8);
cv::cvtColor(frame,gray,CV_RGB2GRAY);
cv::equalizeHist(gray, gray);
int cmin = 50;
int cmax = 1000;
std::vector<cv::Rect> rects;
std::vector<std::vector<cv::Point>>::iterator itc=contours.begin();
while (itc!=contours.end()) {
if (itc->size() > cmin && itc->size() < cmax){
human.detectMultiScale(gray, rects);
for (unsigned int i=0;i<rects.size();i++) {
cv::rectangle(frame, cv::Point(rects[i].x, rects[i].y),
cv::Point(rects[i].x+rects[i].width, rects[i].y+rects[i].height),
cv::Scalar(0, 255, 0));
}
++itc;
}else{++itc;}
}
cv::imshow("Frame",frame);
cv::imshow("Background Model",bgmodel);
cv::imshow("Blob",blob);
if(cv::waitKey(30) >= 0) break;
}
return 0;
}
}