1 | initial version |
For GPU version of the HOG, pass in the third parameter confidence as &vector<double>
would work.
Note: you need to configure group_threshold
0 to retrieve the detector scores. See the example code below.
Documentation link: http://docs.opencv.org/3.2.0/de/da6/classcv_1_1cuda_1_1HOG.html#af4a3bf27a5a04817c6d584d9108f50b7
Below is a minimal working example in case you are interested:
// g++ mwp.cpp -o hog --std=c++11 `pkg-config --cflags --libs opencv`
#include "opencv2/core/core.hpp"
#include "opencv2/cudaobjdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/objdetect.hpp"
#include <iostream>
using namespace cv;
static void printUsage() { std::cout << "Usage: hog <image>\n"; }
int main(int argc, char **argv) {
if (argc < 2) {
printUsage();
return 0;
}
//
// Load Image
//
Mat frame = imread(argv[1], CV_LOAD_IMAGE_COLOR);
Mat img;
cvtColor(frame, img, COLOR_BGR2BGRA);
cuda::GpuMat gpu_img;
gpu_img.upload(img);
//
// Create Hog
//
Size win_size(64, 128);
Size block_size(16, 16);
Size block_stride(8, 8);
Size cell_size(8, 8);
int nbins = 9;
cv::Ptr<cv::cuda::HOG> hog = cv::cuda::HOG::create(
win_size, block_size, block_stride, cell_size, nbins);
Mat detector = hog->getDefaultPeopleDetector();
hog->setSVMDetector(detector);
//
// Do detection
//
hog->setGroupThreshold(0); // Important
std::vector<Rect> found;
std::vector<double> confidences;
hog->detectMultiScale(gpu_img, found, &confidences);
//
// Show result
//
assert(found.size() == confidences.size());
for (int i = 0; i < found.size(); i++) {
Rect r = found[i];
printf("(%d, %d, %d, %d), %3.2f\n", r.x, r.y, r.width, r.height,
confidences[i]);
}
return 0;
}