1 | initial version |
hi everyone, anyway i use to this way to configure the SVM. If anyone has better idea, any comment, any suggestion or whatever thing about following code, plz comment it here. i use only 30 samples for one character and 16 features for one sample, i know thats not enough at all. but to get the clear idea about SVM, i use this way.
float labels[1080][1] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0,
6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0,
7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0,
8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0,
9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0,
10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0,
11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0,
12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0,
13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0, 13.0,
14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0, 14.0,
15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0,
16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0,
17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0,
18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0,
19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0,
20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0,
21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0,
22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0,
23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0, 23.0,
24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0,
25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0,
26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0, 26.0,
27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0, 27.0,
28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0,
29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0,
30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0,
31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0, 31.0,
32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0, 32.0,
33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0, 33.0,
34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0, 34.0,
35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0,
36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0, 36.0};
Mat matlabesls(1080,1, CV_32FC1, labels);
Mat mattrainingDataMat(1080, 16, CV_32FC1, ifarr_readtrainingdata);
//CvSVMParams params;
params.svm_type = CvSVM::C_SVC;
params.kernel_type = CvSVM::RBF;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);
//CvSVM SVM;
SVM.train(mattrainingDataMat,matlabesls,Mat(),Mat(),params);