1 | initial version |
Yes there is a documentation. About findContours I think it is clear :
compresses horizontal, vertical, and diagonal segments and leaves only their end points. For example, an up-right rectangular contour is encoded with 4 points.
PS Are you sur of your link :Xingang, et al., "Bag of Contour Fragments for Robust Shape Classification" (2014). http://dl.acm.org/citation.cfm?id=258. 9350 is missing?
2 | No.2 Revision |
Yes there is a documentation. About findContours I think it is clear :
compresses horizontal, vertical, and diagonal segments and leaves only their end points. For example, an up-right rectangular contour is encoded with 4 points.
PS Are you sur of your link :Xingang, et al., "Bag of Contour Fragments can test using a small program :
Mat img(300,300,CV_8UC1,Scalar::all(0)),imgColor;
rectangle(img, Rect(100, 100, 100, 100), Scalar(255), -1);
rectangle(img, Rect(150, 50, 100, 100), Scalar(255), -1);
vector<vector<Point>> ctr;
Mat hierarchy;
findContours(img,ctr,hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE);
cvtColor(img,imgColor,CV_GRAY2BGR);
cout<< "#contour : "<<ctr.size()<<"\n";
for Robust Shape Classification" (2014). http://dl.acm.org/citation.cfm?id=258. 9350 is missing? (int i=0;i<ctr.size();i++)
{
cout<< "Ctr "<<i<<"\n";
for (int j=0;j<ctr[i].size();j++)
{
cout <<ctr[i][j]<<"\t";
putText(imgColor,format("%d",j), ctr[i][j], FONT_HERSHEY_SIMPLEX,1,Scalar(255,0,255));
}
cout<<"\n";
}
imshow("test", imgColor);
waitKey();
result is :