1 | initial version |
Hi may be it can helpp
nclude header file "opencv2/features2d/features2d.hpp" where brisk class is implemented
//read some images in gray scale
const char * PimA="box.png"; // object const char * PimB="box_in_scene.png"; // image
cv::Mat GrayA =cv::imread(PimA); cv::Mat GrayB =cv::imread(PimB);
std::vector<cv::keypoint> keypointsA, keypointsB; cv::Mat descriptorsA, descriptorsB;
//set brisk parameters int Threshl=60; int Octaves=4; (pyramid layer) from which the keypoint has been extracted float PatternScales=1.0f;
//declare a variable BRISKD of the type cv::BRISK
cv::BRISK BRISKD(Threshl,Octaves,PatternScales);//initialize algoritm BRISKD.create("Feature2D.BRISK");
BRISKD.detect(GrayA, keypointsA); BRISKD.compute(GrayA, keypointsA,descriptorsA);
BRISKD.detect(GrayB, keypointsB); BRISKD.compute(GrayB, keypointsB,descriptorsB);
Declare one type off matcher cv::BruteForceMatcher<cv::hamming> matcher;
another match that can be use ///cv::FlannBasedMatcher matcher(new cv::flann::LshIndexParams(20,10,2));
std::vector<cv::dmatch> matches; matcher.match(descriptorsA, descriptorsB, matches);
cv::Mat all_matches;
cv::drawMatches( GrayA, keypointsA, GrayB, keypointsB,
matches, all_matches, cv::Scalar::all(-1), cv::Scalar::all(-1),
vector<char>(),cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
cv::imshow( "BRISK All Matches", all_matches );
cv::waitKey(0);
IplImage* outrecog = new IplImage(all_matches);
cvSaveImage( "BRISK All Matches.jpeg", outrecog );
you can also use: Common Interfaces of Feature Detectors
cv::Ptr<cv::featuredetector> detector = cv::Algorithm::create<cv::featuredetector>("Feature2D.BRISK");
detector->detect(GrayA, keypointsA); detector->detect(GrayB, keypointsB);
cv::Ptr<cv::descriptorextractor> descriptorExtractor =cv::Algorithm::create<cv::descriptorextractor>("Feature2D.BRISK");
descriptorExtractor->compute(GrayA, keypointsA, descriptorsA); descriptorExtractor->compute(GrayB, keypointsB, descriptorsB);
the result with this code is like at this http://docs.opencv.org/_images/Feature_Description_BruteForce_Result.jpg
2 | No.2 Revision |
Hi may be it can helpp
nclude header file "opencv2/features2d/features2d.hpp" where brisk class is implemented
//read some images in gray scale
const char * PimA="box.png"; // object const char * PimB="box_in_scene.png"; // image
cv::Mat GrayA =cv::imread(PimA); cv::Mat GrayB =cv::imread(PimB);
std::vector<cv::keypoint> keypointsA, keypointsB; cv::Mat descriptorsA, descriptorsB;
//set brisk parameters int Threshl=60; int Octaves=4; (pyramid layer) from which the keypoint has been extracted float PatternScales=1.0f;
//declare a variable BRISKD of the type cv::BRISK
cv::BRISK BRISKD(Threshl,Octaves,PatternScales);//initialize algoritm BRISKD.create("Feature2D.BRISK");
BRISKD.detect(GrayA, keypointsA); BRISKD.compute(GrayA, keypointsA,descriptorsA);
BRISKD.detect(GrayB, keypointsB); BRISKD.compute(GrayB, keypointsB,descriptorsB);
Declare one type off matcher cv::BruteForceMatcher<cv::hamming> matcher;
another match that can be use ///cv::FlannBasedMatcher matcher(new cv::flann::LshIndexParams(20,10,2));
std::vector<cv::dmatch>
std::vector<cv::DMatch>
matches;
you can also use: Common Interfaces of Feature Detectors
cv::Ptr<cv::featuredetector> detector = cv::Algorithm::create<cv::featuredetector>("Feature2D.BRISK");
detector->detect(GrayA, keypointsA); detector->detect(GrayB, keypointsB);
cv::Ptr<cv::descriptorextractor> descriptorExtractor =cv::Algorithm::create<cv::descriptorextractor>("Feature2D.BRISK");
descriptorExtractor->compute(GrayA, keypointsA, descriptorsA); descriptorExtractor->compute(GrayB, keypointsB, descriptorsB);
the result with this code is like at this http://docs.opencv.org/_images/Feature_Description_BruteForce_Result.jpg
3 | No.3 Revision |
Hi may be it can helpp
nclude header file "opencv2/features2d/features2d.hpp" where brisk class is implemented
//read some images in gray scale
const char * PimA="box.png"; // object
const char * PimB="box_in_scene.png"; // std::vector<cv::keypoint>
//set brisk parameters
parameters
int Threshl=60;
int Octaves=4; (pyramid layer) from which the keypoint has been extracted
float PatternScales=1.0f;PatternScales=1.0f;
//declare a variable BRISKD of the type cv::BRISK
cv::BRISK BRISKD(Threshl,Octaves,PatternScales);//initialize algoritm
Declare one type off matcher
cv::BruteForceMatcher<cv::hamming> matcher;
cv::BruteForceMatcher<cv::Hamming> matcher;
another match that can be use
use
///cv::FlannBasedMatcher matcher(new cv::flann::LshIndexParams(20,10,2));
cv::flann::LshIndexParams(20,10,2));
std::vector<cv::DMatch> matches;
matcher.match(descriptorsA, descriptorsB, matches);
cv::Mat all_matches;
cv::drawMatches( GrayA, keypointsA, GrayB, keypointsB,
matches, all_matches, cv::Scalar::all(-1), cv::Scalar::all(-1),
vector<char>(),cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
cv::imshow( "BRISK All Matches", all_matches );
cv::waitKey(0);
IplImage* outrecog = new IplImage(all_matches);
cvSaveImage( "BRISK All Matches.jpeg", outrecog );
you can also use: Common Interfaces of Feature Detectors
cv::Ptr<cv::featuredetector>
cv::Ptr<cv::FeatureDetector>
detector = cv::Ptr<cv::descriptorextractor>
the result with this code is like at this http://docs.opencv.org/_images/Feature_Description_BruteForce_Result.jpg
4 | No.4 Revision |
Hi may be it can helpp
nclude include header file "opencv2/features2d/features2d.hpp" where brisk class is implemented
"opencv2/features2d/features2d.hpp"
//read some images in gray scale
const char * PimA="box.png"; // object
const char * PimB="box_in_scene.png"; // image
cv::Mat GrayA =cv::imread(PimA);
cv::Mat GrayB =cv::imread(PimB);
std::vector<cv::KeyPoint> keypointsA, keypointsB;
cv::Mat descriptorsA, descriptorsB;
//set brisk parameters
int Threshl=60;
int Octaves=4; (pyramid layer) from which the keypoint has been extracted
float PatternScales=1.0f;
//declare a variable BRISKD of the type cv::BRISK
cv::BRISK BRISKD(Threshl,Octaves,PatternScales);//initialize algoritm
BRISKD.create("Feature2D.BRISK");
BRISKD.detect(GrayA, keypointsA);
BRISKD.compute(GrayA, keypointsA,descriptorsA);
BRISKD.detect(GrayB, keypointsB);
BRISKD.compute(GrayB, keypointsB,descriptorsB);
Declare one type off matcher
cv::BruteForceMatcher<cv::Hamming> matcher;
another match that can be use
///cv::FlannBasedMatcher matcher(new cv::flann::LshIndexParams(20,10,2));
std::vector<cv::DMatch> matches;
matcher.match(descriptorsA, descriptorsB, matches);
cv::Mat all_matches;
cv::drawMatches( GrayA, keypointsA, GrayB, keypointsB,
matches, all_matches, cv::Scalar::all(-1), cv::Scalar::all(-1),
vector<char>(),cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
cv::imshow( "BRISK All Matches", all_matches );
cv::waitKey(0);
IplImage* outrecog = new IplImage(all_matches);
cvSaveImage( "BRISK All Matches.jpeg", outrecog );
you can also use: Common Interfaces of Feature Detectors
cv::Ptr<cv::FeatureDetector> detector = cv::Algorithm::create<cv::FeatureDetector>("Feature2D.BRISK");
detector->detect(GrayA, keypointsA);
detector->detect(GrayB, keypointsB);
cv::Ptr<cv::DescriptorExtractor> descriptorExtractor =cv::Algorithm::create<cv::DescriptorExtractor>("Feature2D.BRISK");
descriptorExtractor->compute(GrayA, keypointsA, descriptorsA);
descriptorExtractor->compute(GrayB, keypointsB, descriptorsB);
the result with this code is like at this http://docs.opencv.org/_images/Feature_Description_BruteForce_Result.jpg