1 | initial version |
Alright so I found out the mistakes.
There were three problems with my code:
1) In the show_angle
function the numpy operators should have had greater than equal to and less than or equal to comparison.
2) I did not divide by pi
in the formula used to convert rads to degrees.
3) I should have converted the numpy matrix to uint8
type.
The corrected code :
import cv2
import numpy as np
import matplotlib.pyplot as plt
import math
def show_image(name, img, waitkey=0):
cv2.namedWindow(name, 0)
cv2.imshow(name, img)
cv2.waitKey(waitkey)
cv2.destroyWindow(name)
img = cv2.imread('hex2.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
shape = img.shape
out_x = cv2.Sobel(img, cv2.CV_16S, 1, 0) # x gradient
out_y = cv2.Sobel(img, cv2.CV_16S, 0, 1) # y gradient
out_x = cv2.convertScaleAbs(out_x)
out_y = cv2.convertScaleAbs(out_y)
out_weight = cv2.addWeighted(out_x, 0.5, out_y, 0.5,0) # x and y weighted
def show_angle(out_weight, mag_final, dir_final, min_mag, theta_min, theta_max):
"""
Return points based on magnitude and angle constraints
"""
out_img = np.multiply(
(
# (mag_final > min_mag) &
(dir_final >= theta_min) &
(dir_final <= theta_max)
).astype(int),
out_weight
).astype('uint8')
return out_img
def mag_dir():
"""
Calculate gradient magnitude and direction matrix
"""
mag = np.sqrt(
np.add
(
np.square(out_x) , np.square(out_y)
)
)
dir = np.arctan2(out_y, out_x)
dir = np.multiply(dir, 180/math.pi)
print np.min(dir) # 0
print np.max(dir) # 89
# plt.hist(mag,8)
# plt.show()
return mag, dir
mag, dir = mag_dir()
out_final = show_angle(out_weight, mag, dir, 1, 60, 90)
show_image("angle", out_final, 0)